
Simulink® Design Optimization™

Reference

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Optimization™ Reference
© COPYRIGHT 1998–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

September 2011 Online only New for Version 2.0 (Release R2011b)
March 2012 Online only Revised for Version 2.1 (Release R2012a)
September 2012 Online only Revised for Version 2.2 (Release R2012b)
March 2013 Online only Revised for Version 2.3 (Release R2013a)
September 2013 Online only Revised for Version 2.4 (Release R2013b)
March 2014 Online only Revised for Version 2.5 (Release 2014a)
October 2014 Online only Revised for Version 2.6 (Release 2014b)
March 2015 Online only Revised for Version 2.7 (Release 2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Blocks — Alphabetical List
1

Class Reference
2

Alphabetical List
3

1

Blocks — Alphabetical List

1 Blocks — Alphabetical List

1-2

Adaptive Lookup Table (1D Stair-Fit)

One-dimensional adaptive table lookup

Library

Simulink Design Optimization

Description

The Adaptive Lookup Table (1D Stair-Fit) block creates a one-dimensional adaptive
lookup table by dynamically updating the underlying lookup table. The block uses the
outputs, y, of your system to do the adaptations.

Each indexing parameter u may take a value within a set of adapting data points, which
are called breakpoints. Two breakpoints in each dimension define a cell. The set of all
breakpoints in one of the dimensions defines a grid. In the one-dimensional case, each
cell has two breakpoints, and the cell is a line segment.

You can use the Adaptive Lookup Table (1D Stair Fit) block to model time-varying
systems with one input.

Data Type Support

Doubles only

 Adaptive Lookup Table (1D Stair-Fit)

1-3

Dialog Box

First input (row) breakpoint set
The vector of values containing possible block input values. The input vector must be
monotonically increasing.

Make initial table an input

1 Blocks — Alphabetical List

1-4

Selecting this check box forces the Adaptive Lookup Table (1D Stair-Fit) block to
ignore the Table data (initial) parameter, and creates a new input port Tin. Use
this port to input the table data.

Table data (initial)
The initial table output values. This vector must be of size N-1, where N is the
number of breakpoints.

Table numbering data
Number values assigned to cells. This vector must be the same size as the table data
vector, and each value must be unique.

Adaptation method
ChooseSample mean or Sample mean (with forgetting). Sample mean
averages all the values received within a cell. Sample mean with forgetting gives
more weight to the new data. How much weight is determined by the Adaptation
gain parameter. For more information, see “Selecting an Adaptation Method”.

Adaptation gain (0 to 1)
A number between 0 and 1 that regulates the weight given to new data during the
adaptation. A 0 means short memory (last data becomes the table value), and 1
means long memory (average all data received in a cell).

Make adapted table an output
Selecting this check box creates an additional output port Tout for the adapted table.

Add adaptation enable/disable/reset port
Selecting this check box creates an additional input port Enable that enables,
disables, or resets the adaptive lookup table. A signal value of 0 applied to the port
disables the adaptation, and signal value of 1 enables the adaptation. Setting the
signal value to 2 resets the table values to the initial table data.

Add cell lock enable/disable port
Selecting this check box creates an additional input port Lock that provides the
means for updating only specified cells during a simulation run. A signal value of 0
unlocks the specified cells and signal value of 1 locks the specified cells.

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.

See Also
Adaptive Lookup Table (2D Stair-Fit) | Adaptive Lookup Table (nD Stair-Fit)

 Adaptive Lookup Table (1D Stair-Fit)

1-5

More About
• “What are Adaptive Lookup Tables?”
• “Selecting an Adaptation Method”

1 Blocks — Alphabetical List

1-6

Adaptive Lookup Table (2D Stair-Fit)

Two-dimensional adaptive table lookup

Library

Simulink Design Optimization

Description

The Adaptive Lookup Table (2D Stair-Fit) block creates a two-dimensional adaptive
lookup table by dynamically updating the underlying lookup table. The block uses the
outputs, y, of your system to do the adaptations.

Each indexing parameter u may take a value within a set of adapting data points, which
are called breakpoints. Two breakpoints in each dimension define a cell. The set of all
breakpoints in one of the dimensions defines a grid. In the two-dimensional case, each
cell has four breakpoints and is a flat surface.

You can use the Adaptive Lookup Table (2D Stair-Fit) block to model time-varying
systems with two inputs.

Data Type Support

Doubles only

 Adaptive Lookup Table (2D Stair-Fit)

1-7

Dialog Box

First input (row) breakpoint set
The vector of values containing possible block input values for the first input
variable. The first input vector must be monotonically increasing.

1 Blocks — Alphabetical List

1-8

Second input (column) breakpoint set
The vector of values containing possible block input values for the second input
variable. The second input vector must be monotonically increasing.

Make initial table an input
Selecting this check box forces the Adaptive Lookup Table (2D Stair-Fit) block to
ignore the Table data (initial) parameter, and creates a new input port Tin. Use
this port to input the table data.

Table data (initial)
The initial table output values. This 2-by-2 matrix must be of size (n-1)-by-(m-1),
where n is the number of first input breakpoints and m is the number of second input
breakpoints.

Table numbering data
Number values assigned to cells. This matrix must be the same size as the table data
matrix, and each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean averages
all the values received within a cell. Sample mean with forgetting gives more
weight to the new data. How much weight is determined by the Adaptation gain
parameter. For more information, see “Selecting an Adaptation Method”.

Adaptation gain (0 to 1)
A number from 0 to 1 that regulates the weight given to new data during the
adaptation. A 0 means short memory (last data becomes the table value), and 1
means long memory (average all data received in a cell).

Make adapted table an output
Selecting this check box creates an additional output port Tout for the adapted table.

Add adaptation enable/disable/reset port
Selecting this check box creates an additional input port Enable that enables,
disables, or resets the adaptive lookup table. A signal value of 0 applied to the port
disables the adaptation, and signal value of 1 enables the adaptation. Setting the
signal value to 2 resets the table values to the initial table data.

Add cell lock enable/disable port
Selecting this check box creates an additional input port Lock that provides the
means for updating only specified cells during a simulation run. A signal value of 0
unlocks the specified cells and signal value of 1 locks the specified cells.

 Adaptive Lookup Table (2D Stair-Fit)

1-9

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.

See Also
Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (nD Stair-Fit)

More About
• “What are Adaptive Lookup Tables?”
• “Selecting an Adaptation Method”

1 Blocks — Alphabetical List

1-10

Adaptive Lookup Table (nD Stair-Fit)

Adaptive lookup table of arbitrary dimension

Library

Simulink Design Optimization

Description

The Adaptive Lookup Table (nD Stair-Fit) block creates an adaptive lookup table of
arbitrary dimension by dynamically updating the underlying lookup table. The block
uses the outputs of your system to do the adaptations.

Each indexing parameter may take a value within a set of adapting data points, which
are called breakpoints. Breakpoints in each dimension define a cell. The set of all
breakpoints in one of the dimensions defines a grid. In the n-dimensional case, each cell
has two n breakpoints and is an (n-1) hypersurface.

You can use the Adaptive Lookup Table (nD Stair-Fit) block to model time-varying
systems with 2 or more inputs.

Data Type Support

Doubles only

 Adaptive Lookup Table (nD Stair-Fit)

1-11

Dialog Box

Number of table dimensions
The number of dimensions for the adaptive lookup table.

Table breakpoints (cell array)

1 Blocks — Alphabetical List

1-12

A set of one-dimensional vectors that contains possible block input values for the
input variables. Each input row must be monotonically increasing, but the rows do
not have to be the same length. For example, if the Number of table dimensions is
3, you can set the table breakpoints as follows:

{[1 2 3], [5 7], [1 3 5 7]}

Make initial table an input
Selecting this check box forces the Adaptive Lookup Table (nD Stair-Fit) block to
ignore the Table data (initial) parameter, and creates a new input port Tin. Use
this port to input the table data.

Table data (initial)
The initial table output values. This (n-D) array must be of size (n-1)-by-(n-1) ... -by-
(n-1), (D times), where D is the number of dimensions and n is the number of input
breakpoints.

Table numbering data
Number values assigned to cells. This vector must be the same size as the table data
array, and each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean averages
all the values received within a cell. Sample mean with forgetting gives more
weight to the new data. How much weight is determined by the Adaptation gain
parameter. For more information, see “Selecting an Adaptation Method”.

Adaptation gain (0 to 1)
A number from 0 to 1 that regulates the weight given to new data during the
adaptation. A 0 means short memory (last data becomes the table value), and 1
means long memory (average all data received in a cell).

Make adapted table an output
Selecting this check box creates an additional output port Tout for the adapted table.

Note: The Adaptive Lookup Table (n-D Stair Fit) block cannot output a table of 3 or
more dimensions.

Add adaptation enable/disable/reset port
Selecting this check box creates an additional input port Enable that enables,
disables, or resets the adaptive lookup table. A signal value of 0 applied to the port

 Adaptive Lookup Table (nD Stair-Fit)

1-13

disables the adaptation, and signal value of 1 enables the adaptation. Setting the
signal value to 2 resets the table values to the initial table data.

Add cell lock enable/disable port
Selecting this check box creates an additional input port Lock that provides the
means for updating only specified cells during a simulation run. A signal value of 0
unlocks the specified cells and signal value of 1 locks the specified cells.

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.

See Also
Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (2D Stair-Fit)

Related Examples
• “Model Engine Using n-D Adaptive Lookup Table”

More About
• “What are Adaptive Lookup Tables?”
• “Selecting an Adaptation Method”

1 Blocks — Alphabetical List

1-14

Check Against Reference
Check that model signal tracks reference signal during simulation

Library

Simulink Design Optimization

Description

Check that a signal remains within tolerance bounds of a reference signal during
simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB® prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add Check Against Reference blocks on multiple signals to check that they track
reference signals.

You can also plot the reference signal on a time plot to graphically verify that the signal
tracks that signal.

This block and the other blocks in the Model Verification library test that a signal
remains within specified time-domain characteristic bounds. When a model does not

 Check Against Reference

1-15

violate any bound, you can disable the block by clearing the assertion option. If you
modify the model, you can re-enable assertion to ensure that your changes do not cause
the model to violate a bound.

If the signal does not satisfy the bounds, you can optimize the model parameters to
satisfy the bounds. If you have Simulink® Control Design™ software, you can add
frequency-domain bounds such as Bode magnitude and optimize the model response to
satisfy both time- and frequency-domain requirements.

The block can be used in all simulation modes for signal monitoring but only in Normal
or Accelerator simulation mode for response optimization.

Parameters

Task Parameters

Specify a reference signal to:

• Assert that a signal tracks the reference
• Optimize model response so that a

signal tracks the reference

Include reference signal tracking in
assertion in Bounds tab.

Specify assertion options (only when you
specify reference to track).

In the Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion

fails
• Output assertion signal

Open Response Optimization tool to
optimize model response

Click Response Optimization

Plot reference signal Click Show Plot.
Display plot window instead of Block
Parameters dialog box on double-clicking
the block.

Show plot on block open

1 Blocks — Alphabetical List

1-16

Include reference signal tracking in assertion

Check that the signal does not track the reference signal specified in “Times (seconds)” on
page 1-18 and “Amplitudes” on page 1-19 during simulation.

The software displays a warning if the signal does not track the reference signal.

This parameter is used only if Enable assertion in the Assertion tab is selected.

The reference signal also appears on a time plot if you click Show Plot, as shown in the
next figure.

If you clear Enable assertion, the bounds are not used for assertion but continue to
appear on the plot.

Settings

Default: On

 On

 Check Against Reference

1-17

Check that the signal tracks the specified reference signal during simulation.

 Off
Do not check that the signal tracks the specified reference signal during simulation.

Tips

• Clearing this parameter disables the reference signal and the software stops checking
that the signal tracks the reference during simulation.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableReferenceBound
Type: string
Value: 'on' | 'off'
Default: 'on'

1 Blocks — Alphabetical List

1-18

Times (seconds)

Time vector for the reference signal. Specify the corresponding amplitudes in
“Amplitudes” on page 1-19.

Settings

Default: linspace(0,10)

Command-Line Information
Parameter: ReferenceTimes
Type: string
Value: linspace(0,10) | vector of positive values of the same
dimension as the amplitude vector |
Default: linspace(0,10)

 Check Against Reference

1-19

Amplitudes

Amplitude of the reference signal corresponding to the time vector specified in “Times
(seconds)” on page 1-18.

Settings

Default: 1-exp(-linspace(0,10)/2)

Command-Line Information
Parameter: ReferenceAmplitudes
Type: string
Value: 1-exp(-linspace(0,10)/2) | vector of integers of the same
dimension as the time vector

Default: 1-exp(-linspace(0,10)/2)

1 Blocks — Alphabetical List

1-20

Absolute tolerance

Absolute tolerance used to determine bounds as the signal approaches the reference
signal.

During simulation, the signal must remain within upper and lower limits respective to
the reference signal given by:

yu = (1 + RelTol)yr + AbsTol

yl = (1 –RelTol)yr – AbsTol

where yr is the value of the reference at a certain time, yu and yl are the upper and lower
tolerance bounds corresponding to that time point.

The block asserts if the signal violates these limits.

Settings

Default: eps^(1/3)

Minimum: 0

Command-Line Information
Parameter: AbsTolerance
Type: string
Value: eps^(1/3) | positive real scalar
Default: eps^(1/3)

 Check Against Reference

1-21

Relative tolerance

Relative tolerance used to determine bounds as the signal approaches the reference
signal.

During simulation, the signal must remain within upper and lower limits respective to
the reference signal given by:

yu = (1 + RelTol)yr + AbsTol

yl = (1 — RelTol)yr— AbsTol

where yr is the value of the reference at a certain time, yu and yl are the upper and lower
tolerance bounds corresponding to that time point.

The block asserts if the signal violates these limits.

Settings

Default: 0.01

Minimum: 0

Command-Line Information
Parameter: RelTolerance
Type: string
Value: 0.01 | positive real scalar
Default: 0.01

1 Blocks — Alphabetical List

1-22

Enable assertion

Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If the assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional).

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails.

This parameter has no effect if you do not specify any bounds.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Configuration Parameters dialog box of the Simulink model, the Model
Verification block enabling option in the Debugging area of Data Validity node,
lets you to enable or disable all model verification blocks in a model, regardless of the
setting of this option.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB
prompt if bounds are violated.

 Off

 Check Against Reference

1-23

Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Command-Line Information
Parameter: enabled
Type: string
Value: 'on' | 'off'
Default: 'on'

1 Blocks — Alphabetical List

1-24

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

Settings

Default: []

A MATLAB expression.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: callback
Type: string
Value: '' | MATLAB expression
Default: ''

 Check Against Reference

1-25

Stop simulation when assertion fails

Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from a Simulink model window, the Simulation Diagnostics
window opens to display an error message. The block where the bound violation occurs is
highlighted in the model.

Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated and produce a warning message at the
MATLAB prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: stopWhenAssertionFail
Type: string
Value: 'on' | 'off'
Default: 'off'

1 Blocks — Alphabetical List

1-26

Output assertion signal

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (0) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if the Implement logic signals as Boolean
data option in the Optimization pane of the Configuration Parameters dialog box of the
Simulink model is selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Model
Verification Using Simulink Control Design and Simulink Verification Blocks”.

Command-Line Information
Parameter: export
Type: string
Value: 'on' | 'off'
Default: 'off'

 Check Against Reference

1-27

Show plot on block open

Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot.

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: string
Value: 'on' | 'off'
Default: 'off'

Show Plot

Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system
characteristics or signal.

You can display additional characteristics, such as the peak response time, by right-
clicking the plot and selecting Characteristics.

1 Blocks — Alphabetical List

1-28

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or
right-click the plot and select Bounds > New Bound. For more information on the
types of bounds, see the individual reference pages.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting
View > Highlight Simulink Block. This action makes the model window active and
highlights the block.

•
Simulating the model by clicking or selecting Simulation > Start. This action
also linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

A new option Response Optimization appears under Tools of Simulink Control Design
Model Verification blocks if Simulink Design Optimization™ is installed.

Response Optimization

Open the Response Optimization tool to optimize the model response to meet design
requirements specified in the Bounds tab.

This button appears in Simulink Control Design “Model Verification” Block Parameters
dialog box only if you have Simulink Design Optimization software.

See Also

• “Design Optimization to Meet Step Response Requirements (GUI)”
• “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)”

 Check Against Reference

1-29

See Also

• Check Custom Bounds
• Check Step Response Characteristics

Tutorials

“Design Optimization to Track Reference Signal (GUI)”

1 Blocks — Alphabetical List

1-30

Check Custom Bounds
Check that signal satisfies upper and lower bounds during simulation

Library

Simulink Design Optimization

Description

Check that a signal satisfies upper and lower bounds during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add Check Custom Bounds blocks on multiple signals to check that they satisfy
the bounds.

You can also plot the bounds on a time plot to graphically verify that the signal satisfies
the bounds.

This block and the other blocks in the Model Verification library test that a signal
remains within specified time-domain characteristic bounds. When a model does not

 Check Custom Bounds

1-31

violate any bound, you can disable the block by clearing the assertion option. If you
modify the model, you can re-enable assertion to ensure that your changes do not cause
the model to violate a bound.

If the signal does not satisfy the bounds, you can optimize the model parameters to
satisfy the bounds. If you have Simulink Control Design software, you can add frequency-
domain bounds such as Bode magnitude and optimize the model response to satisfy both
time- and frequency-domain requirements.

The block can be used in all simulation modes for signal monitoring but only in Normal
or Accelerator simulation mode for response optimization.

Parameters

Task Parameters

Specify upper and lower bounds to:

• Assert that a signal satisfies the bounds
• Optimize model response so that a

signal satisfies the bounds

In the Bounds tab:

• Include upper bound in assertion
• Include lower bound in assertion

Specify assertion options (only when you
specify upper and lower bounds).

In the Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion

fails
• Output assertion signal

Open Response Optimization tool to
optimize model response

Click Response Optimization

Plot upper and lower bounds Click Show Plot.
Display plot window instead of Block
Parameters dialog box on double-clicking
the block.

Show plot on block open

1 Blocks — Alphabetical List

1-32

Include upper bound in assertion

Check that a signal is less than or equal to upper bounds, specified in Times (seconds)
and Amplitudes, during simulation. The software displays a warning if the signal
violates the upper bounds.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple upper bounds on various model signals. The bounds also appear
on the time plot. If you clear Enable assertion, the bounds are not used for assertion
but continue to appear on the plot.

Settings

Default: On

 On
Check that the signal satisfies the specified upper bounds during simulation.

 Off
Do not check that the signal satisfies the specified upper bounds during simulation.

Tips

• Clearing this parameter disables the upper bounds and the software stops checking
that the bounds are satisfied during simulation. The bound segments are also greyed
out on the plot.

 Check Custom Bounds

1-33

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableUpperBound
Type: string
Value: 'on' | 'off'
Default: 'on'

1 Blocks — Alphabetical List

1-34

Times (seconds)

Time vector for one or more upper bound segments, specified in seconds.

Specify the corresponding amplitude values in Amplitudes.

Settings

Default: [0 5; 5 10]

Must be specified as start and end times:

• Positive finite numbers for a single bound with one edge.
• Matrix of positive finite numbers for a single bound with multiple edges.

For example, type [0.1 1;1 10] for two edges at times [0.1 1] and [1 10].
• Cell array of matrices with positive finite numbers for multiple bounds.

Tips

• To assert that amplitudes that correspond to the time vectors are satisfied, select both
Include upper bound in assertion and Enable assertion.

• You can add or modify start and end times from the plot window:

• To add new time vectors, right-click the yellow area on the plot, and select
Edit. Click Insert to add a new row to the Edit Bound dialog box. Specify the
start and end times of the new bound segment in the Time column. Specify the
corresponding amplitudes in the Amplitude column.

• To modify the start and end times, drag the bound segment. Alternatively, right-
click the segment, and select Edit. Specify the new times in the Time column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: UpperBoundTimes
Type: string
Value: [0 5; 5 10] | positive finite numbers | matrix of positive finite
numbers | matrix of positive finite numbers cell array of matrices
with positive finite numbers. Must be specified inside single quotes ('').
Default: [0 5; 5 10]

 Check Custom Bounds

1-35

Amplitudes

Amplitude values for one or more upper bound segments.

Specify the corresponding start and end times in Times (seconds).

Settings

Default: [1.1 1.1; 1.01 1.01]

Must be specified as start and end amplitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges.

For example, type [0 1; 2 3] for two edges at amplitudes [0 1] and [2 3].
• Cell array of matrices with finite numbers for multiple bounds

Tips

• To assert that amplitude bounds are satisfied, select both Include upper bound in
assertion and Enable assertion.

• You can add or modify amplitudes from the plot window:

• To add new amplitudes, right-click the plot, and select Edit. Click Insert to add
a new row to the Edit Bound dialog box. Specify the start and end amplitudes of
the new bound segment in the Amplitude column. Specify the corresponding start
and end times in the Time column.

• To modify the start and end amplitudes, drag the bound segment. Alternatively,
right-click the segment, and select Edit. Specify the new amplitudes in the
Amplitude column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: UpperBoundAmplitudes
Type: string
Value: [1.1 1.1; 1.01 1.01] | finite numbers | matrix of finite numbers
| cell array of matrices with finite numbers. Must be specified inside single
quotes ('').
Default: [1.1 1.1; 1.01 1.01]

1 Blocks — Alphabetical List

1-36

Include lower bound in assertion

Check that a signal is greater than or equal to lower bounds, specified in Times
(seconds) and Amplitudes, during simulation.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple lower bounds on various model signals. The bounds also appear
on the time plot. If you clear Enable assertion, the bounds are not used for assertion
but continue to appear on the plot.

Settings

Default: Off

 On
Check that the signal satisfies the specified lower bounds during simulation.

 Off
Do not check that the signal satisfies the specified lower bounds during simulation.

Tips

• Clearing this parameter disables the lower bounds and the software stops checking
that the bounds are satisfied during simulation. The bound segments are also greyed
out on the plot.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableLowerBound
Type: string

 Check Custom Bounds

1-37

Value: 'on' | 'off'
Default: 'off'

1 Blocks — Alphabetical List

1-38

Times (seconds)

Time vector for one or more lower bound segments, specified in seconds.

Specify the corresponding amplitude values in Amplitudes

Settings

Default: []

Must be specified as start and end times:

• Positive finite numbers for a single bound with one edge.
• Matrix of positive finite numbers for a single bound with multiple edges.

For example, type [0.1 1;1 10] for two edges at times [0.1 1] and [1 10].
• Cell array of matrices with positive finite numbers for multiple bounds.

Tips

• To assert that amplitudes that correspond to the time vectors are satisfied, select both
Include lower bound in assertion and Enable assertion.

• You can add or modify start and end times from the plot window:

• To add new time vectors, right-click the yellow area on the plot, and select
Edit. Click Insert to add a new row to the Edit Bound dialog box. Specify the
start and end times of the new bound segment in the Time column. Specify the
corresponding amplitudes in the Amplitude column.

• To modify the start and end times, drag the bound segment. Alternatively, right-
click the segment, and select Edit. Specify the new times in the Time column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: LowerBoundTimes
Type: string
Value: [] | positive finite numbers | matrix of positive finite numbers
| cell array of matrices with positive finite numbers. Must be specified
inside single quotes ('').
Default: []

 Check Custom Bounds

1-39

Amplitudes

Amplitude values for one or more lower bound segments.

Specify the corresponding start and end times in Times (seconds).

Settings

Default: []

Must be specified as start and end amplitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges.

For example, type [0 1; 2 3] for two edges at amplitudes [0 1] and [2 3].
• Cell array of matrices with finite numbers for multiple bounds

Tips

• To assert that amplitude bounds are satisfied, select both Include lower bound in
assertion and Enable assertion.

• You can add or modify amplitudes from the plot window:

• To add new amplitudes, right-click the plot, and select Edit. Click Insert to add
a new row to the Edit Bound dialog box. Specify the start and end amplitudes of
the new bound segment in the Amplitude column. Specify the corresponding start
and end times in the Time column.

• To modify the start and end amplitudes, drag the bound segment. Alternatively,
right-click the segment, and select Edit. Specify the new amplitudes in the
Amplitude column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: LowerBoundAmplitudes
Type: string
Value: [] | finite numbers | matrix of finite numbers | cell array of
matrices with finite numbers. Must be specified inside single quotes ('').
Default: []

1 Blocks — Alphabetical List

1-40

Enable zero-crossing detection

Ensure that the software simulates the model to produce output at the bound edges.
Simulating the model at the bound edges prevents the simulation solver from missing a
bound edge without asserting that the signal satisfies that bound.

Simulates model at
these time points

Time

Amplitude

1

0
T1 Tbnd_edge2

Tbnd_edge1

For more information on zero-crossing detection, see “Zero-Crossing Detection” in the
Simulink User Guide.

Settings

Default: On

 On
Simulate model at the bound edges

This setting is ignored if the Simulink solver is fixed step.

 Off
Do not simulate model at the bound edges. The software may not compute the output
at the bound edges.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'

 Check Custom Bounds

1-41

Enable assertion

Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If the assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional).

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails.

This parameter has no effect if you do not specify any bounds.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Configuration Parameters dialog box of the Simulink model, the Model
Verification block enabling option in the Debugging area of Data Validity node,
lets you to enable or disable all model verification blocks in a model, regardless of the
setting of this option.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB
prompt if bounds are violated.

 Off

1 Blocks — Alphabetical List

1-42

Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Command-Line Information
Parameter: enabled
Type: string
Value: 'on' | 'off'
Default: 'on'

 Check Custom Bounds

1-43

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

Settings

Default: []

A MATLAB expression.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: callback
Type: string
Value: '' | MATLAB expression
Default: ''

1 Blocks — Alphabetical List

1-44

Stop simulation when assertion fails

Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from a Simulink model window, the Simulation Diagnostics
window opens to display an error message. The block where the bound violation occurs is
highlighted in the model.

Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated and produce a warning message at the
MATLAB prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: stopWhenAssertionFail
Type: string
Value: 'on' | 'off'
Default: 'off'

 Check Custom Bounds

1-45

Output assertion signal

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (0) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if the Implement logic signals as Boolean
data option in the Optimization pane of the Configuration Parameters dialog box of the
Simulink model is selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Model
Verification Using Simulink Control Design and Simulink Verification Blocks”.

Command-Line Information
Parameter: export
Type: string
Value: 'on' | 'off'
Default: 'off'

1 Blocks — Alphabetical List

1-46

Show plot on block open

Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot.

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: string
Value: 'on' | 'off'
Default: 'off'

Show Plot

Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system
characteristics or signal.

You can display additional characteristics, such as the peak response time, by right-
clicking the plot and selecting Characteristics.

 Check Custom Bounds

1-47

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or
right-click the plot and select Bounds > New Bound. For more information on the
types of bounds, see the individual reference pages.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting
View > Highlight Simulink Block. This action makes the model window active and
highlights the block.

•
Simulating the model by clicking or selecting Simulation > Start. This action
also linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

A new option Response Optimization appears under Tools of Simulink Control Design
Model Verification blocks if Simulink Design Optimization is installed.

Response Optimization

Open the Response Optimization tool to optimize the model response to meet design
requirements specified in the Bounds tab.

This button appears in Simulink Control Design “Model Verification” Block Parameters
dialog box only if you have Simulink Design Optimization software.

See Also

• “Design Optimization to Meet Step Response Requirements (GUI)”
• “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)”

1 Blocks — Alphabetical List

1-48

Check Step Response Characteristics
Check that model signal satisfies step response bounds during simulation

Library

Simulink Design Optimization

Description

Check that a signal satisfies step response bounds during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add Check Step Response Characteristics blocks on multiple signals to check
that they satisfy the bounds.

You can also plot the bounds on a time plot to graphically verify that the signal satisfies
the bounds.

This block and the other blocks in the Model Verification library test that a signal
remains within specified time-domain characteristic bounds. When a model does not

 Check Step Response Characteristics

1-49

violate any bound, you can disable the block by clearing the assertion option. If you
modify the model, you can re-enable assertion to ensure that your changes do not cause
the model to violate a bound.

If the signal does not satisfy the bounds, you can optimize the model parameters to
satisfy the bounds. If you have Simulink Control Design software, you can add frequency-
domain bounds such as Bode magnitude and optimize the model response to satisfy both
time- and frequency-domain requirements.

The block can be used in all simulation modes for signal monitoring but only in Normal
or Accelerator simulation mode for response optimization.

Parameters

Task Parameters

Specify step response bounds to:

• Assert that a signal satisfies the bounds
• Optimize model response so that a

signal satisfies the bounds

Include step response bound in
assertion in Bounds tab.

Specify assertion options (only when you
specify step response bounds).

In the Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion

fails
• Output assertion signal

Open Response Optimization tool to
optimize model response

Click Response Optimization

Plot step response Click Show Plot.
Display plot window instead of Block
Parameters dialog box on double-clicking
the block.

Show plot on block open

1 Blocks — Alphabetical List

1-50

Include step response bound in assertion

Check that the step response satisfies all the characteristics specified in:

• Step time (seconds)
• Initial value
• Final Value
• Rise time (seconds)
• % Rise
• Settling time (seconds)
• % Settling
• % Overshoot
• % Undershoot

The software displays a warning if the signal violates the specified step response
characteristics.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

The bounds also appear on the step response plot if you click Show Plot, as shown in the
next figure.

Settling timeRise time

% Undershoot

% Settling
% Overshoot

% Rise

Final
value

Initial
value

 Check Step Response Characteristics

1-51

By default, the line segments represent the following step response requirements:

• Amplitude less than or equal to –0.01 up to the rise time of 5 seconds for 1%
undershoot

• Amplitude between 0.9 and 1.2 up to the settling time of 15 seconds
• Amplitude equal to 1.2 for 20% overshoot up to the settling time of 15 seconds
• Amplitude between 0.99 and 1.01 beyond the settling time for 2% settling

If you clear Enable assertion, the bounds are not used for assertion but continue to
appear on the plot.

Settings

Default: On

 On
Check that the step response satisfies the specified bounds during simulation.

 Off
Do not check that the step response satisfies the specified bounds during simulation.

Tips

• Clearing this parameter disables the step response bounds and the software stops
checking that the bounds are satisfied during simulation. The bound segments are
also greyed out on the plot.

• To only view the bounds on the plot, clear Enable assertion.

1 Blocks — Alphabetical List

1-52

Command-Line Information
Parameter: EnableStepResponseBound
Type: string
Value: 'on' | 'off'
Default: 'on'

 Check Step Response Characteristics

1-53

Step time (seconds)

Time, in seconds, when the step response starts.

Settings

Default: 0

Minimum: 0

Finite real nonnegative scalar.

Tips

• To assert that step time value is satisfied, select both Include step response bound
in assertion and Enable assertion.

• To modify the step time value from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Edit. Specify the new
value in Step time. You must click Update Block before simulating the model.

Command-Line Information
Parameter: StepTime
Type: string
Value: 0 | finite real nonnegative scalar. Must be specified inside single quotes
('').
Default: 0

1 Blocks — Alphabetical List

1-54

Initial value

Value of the signal level before the step response starts.

Settings

Default: 0

Finite real scalar not equal to the final value.

Tips

• To assert that initial value is satisfied, select both Include step response bound in
assertion and Enable assertion.

• To modify the initial value from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Edit. Specify the new
value in Initial value. You must click Update Block before simulating the model.

Command-Line Information
Parameter: InitialValue
Type: string
Value: 0 | finite real scalar not equal to final value. Must be specified
inside single quotes ('').
Default: 0

 Check Step Response Characteristics

1-55

Final value

Final value of the step response.

Settings

Default: 1

Finite real scalar not equal to the initial value.

Tips

• To assert that final value is satisfied, select both Include step response bound in
assertion and Enable assertion.

• To modify the final value from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Edit. Specify the new
value in Final value. You must click Update Block before simulating the model.

Command-Line Information
Parameter: FinalValue
Type: string
Value: 1 | finite real scalar not equal to the initial value. Must be
specified inside single quotes ('').
Default: 1

1 Blocks — Alphabetical List

1-56

Rise time (seconds)

Time taken, in seconds, for the signal to reach a percentage of the final value specified in
% Rise.

Settings

Default: 5

Minimum: 0

Finite positive real scalar, less than the settling time.

Tips

• To assert that rise time value is satisfied, select both Include step response bound
in assertion and Enable assertion.

• To modify the rise time from the plot window, drag the corresponding bound segment.
Alternatively, right-click the segment, and select Edit. Specify the new value in Rise
time. You must click Update Block before simulating the model.

Command-Line Information
Parameter: RiseTime
Type: string
Value: 5 | finite positive real scalar. Must be specified inside single quotes
('').
Default: 5

 Check Step Response Characteristics

1-57

% Rise

The percentage of final value used with the Rise time to define the overall rise time
characteristics.

Settings

Default: 80

Minimum: 0

Maximum: 100

Positive real scalar, less than (100 – % settling).

Tips

• To assert that percent rise value is satisfied, select both Include step response
bound in assertion and Enable assertion.

• To modify the percent rise from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Edit. Specify the new
value in % Rise. You must click Update Block before simulating the model.

Command-Line Information
Parameter: PercentRise
Type: string
Value: 80 | positive scalar less than (100 – % settling). Must be specified
inside single quotes ('').
Default: 80

1 Blocks — Alphabetical List

1-58

Settling time (seconds)

The time, in seconds, taken for the signal to settle within a specified range around the
final value. This settling range is defined as the final value plus or minus the percentage
of the final value, specified in % Settling.

Settings

Default: 7

Finite positive real scalar, greater than rise time.

Tips

• To assert that final value is satisfied, select both Include step response bound in
assertion and Enable assertion.

• To modify the settling time from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Edit. Specify the new
value in Settling time. You must click Update Block before simulating the model.

Command-Line Information
Parameter: SettlingTime
Type: string
Value: 7 | positive finite real scalar greater than rise time. Must be
specified inside single quotes ('').
Default: 7

 Check Step Response Characteristics

1-59

% Settling

The percentage of the final value that defines the settling range of the Settling time
characteristic.

Settings

Default: 1

Minimum: 0

Maximum: 100

Real positive finite scalar, less than (100 – % rise) and less than % overshoot.

Tips

• To assert that percent settling value is satisfied, select both Include step response
bound in assertion and Enable assertion.

• To modify the percent settling from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Edit. Specify the new
value in % Settling. You must click Update Block before simulating the model.

Command-Line Information
Parameter: PercentSettling
Type: string
Value: 1 | Real positive finite scalar less than (100 – % rise) and
less than % overshoot. Must be specified inside single quotes ('').
Default: 1

1 Blocks — Alphabetical List

1-60

% Overshoot

The amount by which the signal can exceed the final value before settling, specified as a
percentage.

Settings

Default: 10

Minimum: 0

Maximum: 100

Positive real scalar, greater than % settling.

Tips

• To assert that percent overshoot value is satisfied, select both Include step
response bound in assertion and Enable assertion.

• To modify the percent overshoot from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Edit. Specify the new
value in % Overshoot. You must click Update Block before simulating the model.

Command-Line Information
Parameter: PercentOvershoot
Type: string
Value: 10 | Positive real scalar greater than % settling. Must be specified
inside single quotes ('').
Default: 10

 Check Step Response Characteristics

1-61

% Undershoot:

The amount by which the signal can undershoot the initial value, specified as a
percentage.

Settings

Default: 1

Minimum: 0

Maximum: 100

Positive finite real scalar.

Tips

• To assert that percent undershoot value is satisfied, select both Include step
response bound in assertion and Enable assertion.

• To modify the percent undershoot from the plot window, drag the corresponding
bound segment. Alternatively, right-click the segment, and select Edit. Specify the
new value in % Undershoot. You must click Update Block before simulating the
model.

Command-Line Information
Parameter: PercentUndershoot
Type: string
Value: 1 | positive finite real scalar between 0 and 100. Must be specified
inside single quotes ('').
Default: 1

1 Blocks — Alphabetical List

1-62

Enable zero-crossing detection

Ensure that the software simulates the model to produce output at the bound edges.
Simulating the model at the bound edges prevents the simulation solver from missing a
bound edge without asserting that the signal satisfies that bound.

Simulates model at
these time points

Time

Amplitude

1

0
T1 Tbnd_edge2

Tbnd_edge1

For more information on zero-crossing detection, see “Zero-Crossing Detection” in the
Simulink User Guide.

Settings

Default: On

 On
Simulate model at the bound edges

This setting is ignored if the Simulink solver is fixed step.

 Off
Do not simulate model at the bound edges. The software may not compute the output
at the bound edges.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'

 Check Step Response Characteristics

1-63

Enable assertion

Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If the assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional).

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails.

This parameter has no effect if you do not specify any bounds.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Configuration Parameters dialog box of the Simulink model, the Model
Verification block enabling option in the Debugging area of Data Validity node,
lets you to enable or disable all model verification blocks in a model, regardless of the
setting of this option.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB
prompt if bounds are violated.

 Off

1 Blocks — Alphabetical List

1-64

Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Command-Line Information
Parameter: enabled
Type: string
Value: 'on' | 'off'
Default: 'on'

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

Settings

Default: []

A MATLAB expression.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: callback
Type: string
Value: '' | MATLAB expression
Default: ''

 Check Step Response Characteristics

1-65

Stop simulation when assertion fails

Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from a Simulink model window, the Simulation Diagnostics
window opens to display an error message. The block where the bound violation occurs is
highlighted in the model.

Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated and produce a warning message at the
MATLAB prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: stopWhenAssertionFail
Type: string
Value: 'on' | 'off'
Default: 'off'

1 Blocks — Alphabetical List

1-66

Output assertion signal

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (0) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if the Implement logic signals as Boolean
data option in the Optimization pane of the Configuration Parameters dialog box of the
Simulink model is selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Model
Verification Using Simulink Control Design and Simulink Verification Blocks”.

Command-Line Information
Parameter: export
Type: string
Value: 'on' | 'off'
Default: 'off'

 Check Step Response Characteristics

1-67

Show plot on block open

Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot.

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: string
Value: 'on' | 'off'
Default: 'off'

1 Blocks — Alphabetical List

1-68

Show Plot

Open the plot window.

Use the plot to view:

• System characteristics and signals computed during simulation

You must click this button before you simulate the model to view the system
characteristics or signal.

You can display additional characteristics, such as the peak response time, by right-
clicking the plot and selecting Characteristics.

• Bounds

You can specify bounds in the Bounds tab of the Block Parameters dialog box or
right-click the plot and select Bounds > New Bound. For more information on the
types of bounds, see the individual reference pages.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting
View > Highlight Simulink Block. This action makes the model window active and
highlights the block.

•
Simulating the model by clicking or selecting Simulation > Start. This action
also linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

A new option Response Optimization appears under Tools of Simulink Control Design
Model Verification blocks if Simulink Design Optimization is installed.

 Check Step Response Characteristics

1-69

Response Optimization

Open the Response Optimization tool to optimize the model response to meet design
requirements specified in the Bounds tab.

This button appears in Simulink Control Design “Model Verification” Block Parameters
dialog box only if you have Simulink Design Optimization software.

See Also

• “Design Optimization to Meet Step Response Requirements (GUI)”
• “Design Optimization to Meet Time- and Frequency-Domain Requirements (GUI)”

1 Blocks — Alphabetical List

1-70

CRMS
Compute continuous-time, cumulative root mean square (CRMS) of signal

Library

Simulink Design Optimization

Description

Attach the CRMS block to a signal to compute its continuous-time, cumulative root mean
square value. Use in conjunction with the Signal Constraint block to optimize the signal
energy.

The continuous-time, cumulative root mean square value of a signal u(t) is defined as

R M S
T

u t dt

T

. . ()= Ú
1 2

0

The R.M.S value gives a measure of the average energy in the signal.

See Also

DRMS, Signal Constraint

 DRMS

1-71

DRMS
Compute discrete-time, cumulative root mean square (DRMS) of signal

Library

Simulink Design Optimization

Description

Attach the DRMS block to a signal to compute its discrete-time, cumulative root mean
square value. Use in conjunction with the Signal Constraint block to optimize the signal
energy.

The discrete-time, cumulative root mean square value of a signal u(ti) is defined as

R M S
N

u ti

i

N

. . ()=

=

Â
1 2

1

The R.M.S value gives a measure of the average energy in the signal.

See Also

CRMS, Signal Constraint

1 Blocks — Alphabetical List

1-72

Signal Constraint
Specify desired signal response

Note: Signal Constraint has been removed. Use sdoupdate to replace it with the
equivalent block from the Signal Constraints block library.

Library

Simulink Design Optimization

2

Class Reference

2 Class Reference

2-2

param.Continuous class
Package: param

Continuous parameter

Syntax

p = param.Continuous(paramname)

p = param.Continuous(paramname,paramvalue)

Description

A continuous parameter is a numeric parameter that can take any value in a specified
interval. The parameter can be scalar- or matrix-valued.

Typically, you use continuous parameters to create parametric models and to estimate or
optimize tunable parameters in such models.

Construction

p = param.Continuous(paramname) constructs a param.Continuous object and
assigns the specified parameter name to the Name property and default values to the
remaining properties.

p = param.Continuous(paramname,paramvalue) assigns the specified parameter
value to the Value property.

sdo.getParameterFromModel also constructs a param.Continuous object or an array
of param.Continuous objects for Simulink model parameters.

Input Arguments

paramname

Parameter name, specified as a string inside single quotes (' ').

 param.Continuous class

2-3

paramvalue

Scalar or matrix numeric double

Properties

Free

Flag specifying whether the parameter is tunable or not.

Set the Free property to true (1) for tunable parameters and false (0) for
parameters you do not want to tune (fixed).

The dimension of this property must match the dimension of the Value property.

For matrix-valued parameters, you can:

• Fix individual matrix elements. For example p.Free = [true false; false
true] or p.Free([2 3]) = false.

• Use scalar expansion to fix all matrix elements. For example p.Free = false.

Default: true (1)

Info

Structure array specifying parameter units and labels.

The structure has Label and Unit fields.

The array dimension must match the dimension of the Value property.

Use this property to store parameter units and labels that describe the parameter.
For example p.Info(1,1).Unit = 'N/m'; or p.Info(1,1).Label = 'spring
constant'.

Default: '' for both Label and Unit fields

Maximum

Upper bound for the parameter value.

The dimension of this property must match the dimension of the Value property.

2 Class Reference

2-4

For matrix-valued parameters, you can:

• Specify upper bounds on individual matrix elements. For example p.Maximum([1
4]) = 5.

• Use scalar expansion to set the upper bound for all matrix elements. For example
p.Maximum = 5.

Default: Inf

Minimum

Lower bound for the parameter value.

The dimension of this property must match the dimension of the Value property.

For matrix-valued parameters, you can:

• Specify lower bounds on individual matrix elements. For example p.Minimum([1
4]) = -5.

• Use scalar expansion to set the lower bound for all matrix elements. For example
p.Minimum = -5.

Default: –Inf

Name

Parameter name.

This property is read-only and is set at object construction.

Default: ''

Scale

Scaling factor used to normalize the parameter value.

The dimension of this property must match the dimension of the Value property.

For matrix-valued parameters, you can:

• Specify scaling for individual matrix elements. For example p.Scale([1 4]) = 1.
• Use scalar expansion to set the scaling for all matrix elements. For example p.Scale

= 1.

 param.Continuous class

2-5

Default: 1

Value

Scalar or matrix value of a parameter.

The dimension of this property is set at object construction.

Default: 0

Methods

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct Continuous Parameter

Construct a param.Continuous object and specify the maximum value.

p = param.Continuous('K',eye(2));

p.Maximum = 5;

• “Design Optimization to Meet Step Response Requirements (Code)”
• “Design Optimization to Meet a Custom Objective (Code)”

Alternatives

“Design Optimization to Meet Step Response Requirements (GUI)”

See Also
sdo.optimize | sdo.getParameterFromModel

2 Class Reference

2-6

How To
• Class Attributes
• Property Attributes

 param.State class

2-7

param.State class
Package: param
Superclasses: param.Continuous

Specify tuning parameters for model states

Description

A state parameter is a numeric parameter, representing a state associated with a model,
that can take any value in a specified interval. The parameter can take scalar or matrix
values.

You use state parameters to estimate or specify the initial state values of a model.

Construction

You obtain a state parameter using the sdo.getStateFromModel function.

For example, use

s = sdo.getStateFromModel('sdoMassSpringDamper','Position');

to obtain the state parameter of the Position block of the sdoMassSpringDamper
Simulink model.

Properties

Free

Flag specifying whether the state parameter is tunable or not.

Set the Free property to true (1) for tunable state parameters and false (0) for
state parameters you do not want to tune, to designate them as fixed.

The dimension of this property must match the dimension of the Value property.

2 Class Reference

2-8

For matrix-valued state parameters, you can:

• Fix individual matrix elements. For example, p.Free = [true false; false
true] or p.Free([2 3]) = false.

• Use scalar expansion to fix all matrix elements. For example, p.Free = false.

Default: true (1)

Info

Structure array specifying state parameter units and labels.

The structure has Label and Unit fields.

The array dimension must match the dimension of the Value property.

Use this property to store state parameter units and labels. For example,
p.Info(1,1).Unit = 'N/m'; or p.Info(1,1).Label = 'spring constant'.

Default: '' for both Label and Unit fields

Maximum

Upper bound for the state parameter value.

The dimension of this property must match the dimension of the Value property.

For matrix-valued state parameters, you can:

• Specify upper bounds on individual matrix elements. For example, p.Maximum([1
4]) = 5.

• Use scalar expansion to set the upper bound for all matrix elements. For example
p.Maximum = 5.

Default: Inf

Minimum

Lower bound for the state parameter value.

The dimension of this property must match the dimension of the Value property.

For matrix-valued state parameters, you can:

 param.State class

2-9

• Specify lower bounds on individual matrix elements. For example p.Minimum([1
4]) = -5.

• Use scalar expansion to set the lower bound for all matrix elements. For example
p.Minimum = -5.

Default: –Inf

Name

State parameter name.

This read-only property is set at object construction.

Default: ''

Scale

Scaling factor used to normalize the state parameter value.

The dimension of this property must match the dimension of the Value property.

For matrix-valued state parameters, you can:

• Specify scaling for individual matrix elements. For example p.Scale([1 4]) = 1.
• Use scalar expansion to set the scaling for all matrix elements. For example p.Scale

= 1.

Default: 1

Value

State parameter value.

You can specify the value as either a scalar or a matrix.

The dimension of this property is set at object construction.

Default: 0

dxFree

Flag specifying whether the state parameter derivative (with respect to time) is tunable
or not.

2 Class Reference

2-10

Set the dxFree property to true (1) for tunable state parameter derivatives and
false (0) for state parameter derivatives you do not want to tune (fixed).

The dimension of this property must match the dimension of the Value property.

For matrix-valued state parameter derivatives, you can:

• Fix individual matrix elements. For example p.dxFree = [true false; false
true] or p.dxFree([2 3]) = false.

• Use scalar expansion to fix all matrix elements. For example p.dxFree = false.

Default: true (1)

dxValue

State parameter derivative (with respect to time) value.

The dimension of this property must match the dimension of the Value property.

Default: 0

Methods

Inherited Methods

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Get State Parameters from Model

modelname = 'sdoAircraft';

load_system(modelname);

blockpath = {'sdoAircraft/Actuator Model', ...

 param.State class

2-11

 'sdoAircraft/Controller/Proportional plus integral compensator'};

s = sdo.getStateFromModel(modelname,blockpath);

• “Estimate Model Parameter Values (Code)”
• “Estimate Model Parameters and Initial States (Code)”

Alternatives

“Specify Known Initial States”

See Also
sdo.Experiment | sdo.getStateFromModel

More About
• Class Attributes
• Property Attributes

2 Class Reference

2-12

sdo.AnalyzeOptions class
Package: sdo

Analysis options for sdo.analyze

Syntax

opt = sdo.AnalyzeOptions

opt = sdo.AnalyzeOptions('Method',method_name)

Description

Specify analysis method and method options for sensitivity analysis using sdo.analyze.

Construction

opt = sdo.AnalyzeOptions creates an sdo.AnalyzeOptions object and assigns
default values to the properties.

To change a property value, use dot notation. For example:

opt = sdo.AnalyzeOptions;

opt.Method = 'StandardizedRegression';

opt.MethodOptions = 'Ranked';

opt = sdo.AnalyzeOptions('Method',method_name) sets the value of the Method
property to method_name.

Input Arguments

method_name

Method name, specified as one of the following strings:'Correlation',
'PartialCorrelation', 'StandardizedRegression', or 'All',

To use multiple methods, specify method_name as a cell array of strings.

 sdo.AnalyzeOptions class

2-13

For example, method_name = 'PartialCorrelation'.

For information about each method, see the Method property description.

Properties

Method

Analysis method used by sdo.analyze, specified as one of the following strings or a cell
array containing a subset of the following strings:

• 'Correlation' — Calculates the correlation coefficients, R. Use to analyze how a
model parameter and the cost function outputs are correlated.

R is calculated as follows:

R i j
C i j

C i i C j j

C cov x y

E x y

E x

x y

x

(,)
(,)

(,) (,)

(,)

[()()]

[]

=

=

= - -

=

m m

m

mmy E y= []

x and y are the input arguments of sdo.analyze.

R values are in the [-1 1] range. The (i,j) entry of R indicates the correlation between
x(i) and y(j).

• R(i,j) > 0 — Variables have positive correlation. The variables increase
together.

• R(i,j) = 0 — Variables have no correlation.
• R(i,j) < 0 — Variables have negative correlation. As one variable increases, the

other decreases.
• 'PartialCorrelation' (Requires a Statistics and Machine Learning Toolbox™

license) — Calculates the partial correlation coefficients, R. Use to analyze how a
model parameter and the cost function are correlated, adjusting to remove the effect
of the other parameters.

2 Class Reference

2-14

R is calculated using partialcorri in the Statistics and Machine Learning Toolbox
software.

• 'StandardizedRegression' — Calculates the standardized regression coefficients,
R. Use when you expect that the model parameters linearly influence the cost
function.

R is calculated as follows:

R bx
x

y

=

s

s

Consider a single sample (x1,...,xNp) and the corresponding single output, y. bx is the
regression coefficient vector calculated using least squares assuming a linear model

ˆ ˆy b b xx
i

Np

ii
= +

=

Â0

1

. R standardizes each element of bx by multiplying it with the ratio of

the standard deviation of the corresponding x sample (σx) to the standard deviation of
y (σy).

• 'All' — The software calculates results for all applicable combinations of Method
and MethodOptions. This option may be time consuming if you have a large sample
set with many parameters and many different cost/constraint outputs.

For x (Ns-by-Np) and y (Ns-by-Nc), all the methods calculate R as an Np-by-Nc table.
Here Ns is the number of samples, Np is the number of model parameters, and Nc is the
number of cost/constraint function evaluations.

Default: 'Correlation'

MethodOptions

String specifying the analysis method option that sdo.analyze uses, specified as one of
the following:

• 'Linear' — Pearson analysis.

Applicable for all methods.
• 'Ranked' — Ranked transformation or Spearman analysis.

Applicable for all methods.

 sdo.AnalyzeOptions class

2-15

• 'Kendall' — Kendall’s tau.

Applicable when Method is specified as 'Correlation'.
• 'AllApplicable' — Computes each applicable combination of Method and

MethodOptions.

Applicable when Method is specified as 'All'.

For more information about these options, see “Sensitivity Analysis Methods”.

Default: 'Linear'

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Specify Analysis Options

opt = sdo.AnalyzeOptions;

opt.Method = 'PartialCorrelation';

opt.MethodOptions = 'Ranked';

See Also
sdo.analyze

More About
• Class Attributes
• Property Attributes
• “Sensitivity Analysis Methods”

2 Class Reference

2-16

sdo.EvaluateOptions class
Package: sdo

Cost function evaluation options for sdo.evaluate

Description

Specify options such as evaluation error handling, display settings, and use of parallel
computing for cost function evaluations using sdo.evaluate.

Construction

opt = sdo.EvaluateOptions creates an sdo.EvaluateOptions object and assigns
default values to the properties.

Use dot notation to modify the property values. For example:

opt = sdo.EvaluateOptions;

opt.Display = 'iter';

Properties

UseParallel

Parallel computing option for sdo.evaluate:

• 'never' — Do not use parallel computing during cost function evaluation
• 'always' — Use parallel computing during cost function evaluation

It is recommended that you also specify values for the EvaluatedModel, and
ParallelFileDependencies, or ParallelPathDependencies properties, if
needed.

Parallel Computing Toolbox™ software must be installed to enable parallel computing
for the cost function evaluation.

 sdo.EvaluateOptions class

2-17

Default: 'never'

StopOnEvaluateError

Flag to stop sdo.evaluate when a cost function evaluation results in an error, specified
as one of the following strings:

• 'on' — sdo.evaluate stops when a cost function evaluation results in an error.
• 'off' — sdo.evaluate continues when a cost function evaluation results in an

error. sdo.evaluate returns the error using the info output argument.

Default: 'off'

Display

Level of display messages for cost function evaluations, specified as one of the following
strings:

• 'off' — Displays no output
• 'final' — Displays only the final output
• 'iter' — Displays the output for each evaluation

Default: 'final'

ParallelFileDependencies

Cell array of strings specifying file dependencies to use during parallel evaluation. Each
string can specify either an absolute or relative path to a file. These files are copied to
the workers during parallel optimization. Use sdo.getModelDependencies to find the
dependencies of a Simulink model.

Default: {}

ParallelPathDependencies

Cell array of strings specifying paths to dependencies to use during parallel evaluation.
These path dependencies are temporarily added to the workers during parallel
optimization. Use sdo.getModelDependencies to find the dependencies of a Simulink
model.

Default: {}

2 Class Reference

2-18

EvaluatedModel

Name of Simulink model name to be evaluated, specified as a string.

This property is used to configure the model for parallel evaluation (UseParallel =
'always').

Default: ''

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Specify Cost Function Evaluation Options

opt = sdo.EvaluateOptions;

opt.Display = 'iter';

opt.StopOnEvaluateError = 'on';

See Also
sdo.evaluate | sdo.getModelDependencies

More About
• Class Attributes
• Property Attributes
• “How to Use Parallel Computing for Sensitivity Analysis”

 sdo.Experiment class

2-19

sdo.Experiment class
Package: sdo

Specify experiment I/O data, model parameters, and initial-state values

Description

An experiment specifies input and output data for a Simulink model. You can also specify
model parameters and initial-state values.

Typically, you use experiments to estimate unknown model parameter values. You can
also use the createSimulator method of an experiment to create a simulation object.
Use the simulation object to simulate the model and compare measured and simulated
data.

Construction

exp = sdo.Experiment(modelname)

Constructs an sdo.Experiment object. It assigns the specified model name to the
ModelName property and default values to the remaining properties.

Input Arguments

modelname

Simulink model name, specified as a string inside single quotes (' ').

The model must either be open or appear on the MATLAB path.

Properties

InitialStates

Model initial-state for the experiment, specified as a param.State object.

2 Class Reference

2-20

To specify multiple initial-states, use a vector of param.State objects.

To obtain model initial states, use sdo.getStateFromModel.

Use this property only for specifying initial-states that differ from the initial state values
defined in the model.

• To estimate the value of an initial state, set the Free property of the initial state to
true.

When you have multiple experiments for a given model, you can estimate model
initial states on a per-experiment basis. To do so, specify the model initial states for
each experiment. You can optionally specify an initial guess for the initial state values
for any of the experiments using the Value property of the state parameters.

• To specify an initial state value as a known quantity, not to be estimated, set its Free
property to false.

After specifying the initial states that you are estimating for an
experiment, use sdo.Experiment.getValuesToEstimate.
sdo.Experiment.getValuesToEstimate returns a vector of all the model parameters
and initial states that you want to estimate. You use this vector as an input to
sdo.optimize to specify the parameters that you want to estimate.

Default: []

InputData

Experiment input data.

Specify signals to apply to root-level input ports. For information on supported forms of
input data, see “Forms of Input Data”.

Default: []

ModelName

Simulink model name associated with the experiment, specified as a string.

The model must appear on the MATLAB path.

Default: ''

 sdo.Experiment class

2-21

OutputData

Experiment output data, specified as a Simulink.SimulationData.Signal object.

To specify multiple output signals, use a vector of Simulink.SimulationData.Signal
objects.

Default: []

Parameters

Model parameter value for the experiment, specified as a param.Continuous object.

To specify values for multiple parameters, use a vector of param.Continuous objects.

To obtain model parameters, use sdo.getParameterFromModel.

Use this property only for specifying parameters values that differ from the parameters
values defined in the model.

• To estimate the value of a parameter, set the Free property of the parameter to true.

When you have multiple experiments for a given model, you can:

• Estimate a model parameter on a per-experiment basis. To do so, specify the model
parameter for each experiment. You can optionally specify the initial guess for the
parameter value for any of the experiments using the Value property.

• Estimate one value for a model parameter using all the experimental data. To
do so, do not specify the model parameter for the experiments. Instead, call
sdo.optimize with the model parameter directly.

For an example of estimating model parameters on a per-experiment basis and using
data from multiple experiments, see “Estimate Model Parameters Per Experiment
(Code)”.

• To specify a parameter value as a known quantity, not to be estimated, set its Free
property to false.

After specifying the parameters that you are estimating for an
experiment, use sdo.Experiment.getValuesToEstimate.
sdo.Experiment.getValuesToEstimate returns a vector of all the model parameters
and initial states that you want to estimate. You use this vector as an input to
sdo.optimize to specify the parameters that you want to estimate.

2 Class Reference

2-22

Default: []

Name

Experiment name, specified as a string.

Default: ''

Description

Experiment description, specified as a string.

Default: ''

Methods

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Specify Input and Output Data for Parameter Estimation

Load the measured experiment data.

load sdoBattery_ExperimentData

The variable Charge_Data, which contains the data measured during a battery charging
experiment, is loaded into the MATLAB workspace. The first column contains time data.
The second and third columns contain the current and voltage data.

Specify an experiment for a model.

modelname = 'sdoBattery';

exp = sdo.Experiment(modelname);

exp.Name = 'Charging';

exp.Description = 'Battery charging data collected on March 15, 2013.';

 sdo.Experiment class

2-23

Specify input data for the experiment.

exp.InputData = timeseries(Charge_Data(:,2),Charge_Data(:,1));

Specify output data for the experiment.

VoltageSig = Simulink.SimulationData.Signal;

VoltageSig.Name = 'Voltage';

VoltageSig.BlockPath = 'sdoBattery/SOC -> Voltage';

VoltageSig.PortType = 'outport';

VoltageSig.PortIndex = 1;

VoltageSig.Values = timeseries(Charge_Data(:,3),Charge_Data(:,1));

exp.OutputData = VoltageSig;

• “Estimate Model Parameter Values (Code)”
• “Estimate Model Parameters and Initial States (Code)”
• “Estimate Model Parameters using Multiple Experiments (Code)”
• “Estimate Model Parameters Per Experiment (Code)”
• “Estimate Model Parameters with Parameter Constraints (Code)”

Alternatives

“Run Estimation”

See Also
param.Continuous | param.State | sdo.getStateFromModel | sdo.optimize

More About
• Class Attributes
• Property Attributes

2 Class Reference

2-24

sdo.OptimizeOptions class
Package: sdo

Optimization options

Syntax

opt = sdo.OptimizeOptions

opt = sdo.OptimizeOptions(Name,Value)

Description

Specify options such as solver, solver options, and use of parallel computing during
optimization.

Construction

opt = sdo.OptimizeOptions creates an sdo.OptimizeOptions object and assigns
default values to the properties.

opt = sdo.OptimizeOptions(Name,Value) creates an sdo.OptimizeOptions
object with additional options specified by one or more Name,Value pair arguments.
Name is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 sdo.OptimizeOptions class

2-25

'GradFcn'

String that indicates whether the cost/constraint function you provide to sdo.optimize
returns gradient information:

• 'on' — The cost/constraint function returns gradient information
• 'off' — The cost/constraint function does not return gradient information. The

software uses central differences to compute the gradients.

Default: 'off'

'Method'

String specifying the optimization solver that sdo.optimize uses to solve the
optimization problem:

• 'fmincon'

• 'fminsearch'

• 'lsqnonlin'

• 'patternsearch' (requires Global Optimization Toolbox software)

See the Optimization Toolbox and Global Optimization Toolbox documentation for more
information on these solvers.

Default: 'fmincon'

'MethodOptions'

Structure with fields specifying optimization solver options. The structure fields are
configured based on the Method property.

You can change solver options. For example, opt.MethodOptions.TolX = 1.5e-3.

For information on the optimization solver options, see:

• “Optimization Options” when Method is specified as 'fmincon', 'fminsearch', or
'lsqnonlin'

• psoptimset and “Pattern Search Options” when Method is specified as
'patternsearch'

Default: [1x1 struct]

http://www.mathworks.com/products/optimization/
http://www.mathworks.com/products/global-optimization/

2 Class Reference

2-26

'OptimizedModel'

String displaying a Simulink model name to be optimized.

Default: ''

'ParallelFileDependencies'

Cell array of strings specifying file dependencies to use during parallel optimization.
Each string can specify either an absolute or relative path to a file. These files are copied
to the workers during parallel optimization. Use sdo.getModelDependencies to find
the dependencies of a Simulink model.

Default: {}

'ParallelPathDependencies'

Cell array of strings specifying paths to dependencies to use during parallel optimization.
These path dependencies are temporarily added to the workers during parallel
optimization. Use sdo.getModelDependencies to find the dependencies of a Simulink
model.

Default: {}

'Restarts'

Nonnegative integer specifying the number of times the optimization solver restarts the
optimization, if convergence criteria are not satisfied. At each restart, the initial values of
the tunable parameters are set to the final value of the previous optimization run.

Default: 0

'StopIfFeasible'

Terminate optimization once a feasible solution satisfying the constraints is found:

• 'on' — Terminate as soon a feasible solution is found
• 'off' — Continue to search for solutions that are typically located further inside the

constraint region

The software ignores this option when you track a reference signal or your problem has a
cost.

Default: 'on'

 sdo.OptimizeOptions class

2-27

'UseParallel'

Parallel computing option for fmincon, lsqnonlin, and patternsearch optimization
solvers:

• 'never' — Do not use parallel computing during optimization
• 'always' — Use parallel computing during optimization

Parallel Computing Toolbox software must be installed to enable parallel computing for
the optimization methods.

When set to 'always', the methods compute the following in parallel:

• fmincon — Finite difference gradients
• lsqnonlin — Finite difference gradients
• patternsearch — Poll and search set evaluation

Note: Parallel computing is not supported for fminsearch.

Default: 'never'

Properties

GradFcn

String that indicates whether the cost/constraint function you provide to sdo.optimize
returns gradient information:

• 'on' — The cost/constraint function returns gradient information
• 'off' — The cost/constraint function does not return gradient information. The

software uses central differences to compute the gradients.

Default: 'off'

Method

String specifying the optimization solver that sdo.optimize uses to solve the
optimization problem:

2 Class Reference

2-28

• 'fmincon'

• 'fminsearch'

• 'lsqnonlin'

• 'patternsearch' (requires Global Optimization Toolbox software)

See the Optimization Toolbox and Global Optimization Toolbox documentation for more
information on these solvers.

Default: 'fmincon'

MethodOptions

Structure with fields specifying optimization solver options. The structure fields are
configured based on the Method property.

You can change solver options. For example, opt.MethodOptions.TolX = 1.5e-3.

For information on the optimization solver options, see:

• “Optimization Options” when Method is specified as 'fmincon', 'fminsearch', or
'lsqnonlin'

• psoptimset and “Pattern Search Options” when Method is specified as
'patternsearch'

Default: [1x1 struct]

OptimizedModel

String displaying a Simulink model name to be optimized.

Default: ''

ParallelFileDependencies

Cell array of strings specifying file dependencies to use during parallel optimization.
Each string can specify either an absolute or relative path to a file. These files are copied
to the workers during parallel optimization. Use sdo.getModelDependencies to find
the dependencies of a Simulink model.

Default: {}

http://www.mathworks.com/products/optimization/
http://www.mathworks.com/products/global-optimization/

 sdo.OptimizeOptions class

2-29

ParallelPathDependencies

Cell array of strings specifying paths to dependencies to use during parallel optimization.
These path dependencies are temporarily added to the workers during parallel
optimization. Use sdo.getModelDependencies to find the dependencies of a Simulink
model.

Default: {}

Restarts

Nonnegative integer specifying the number of times the optimization solver restarts the
optimization, if convergence criteria are not satisfied. At each restart, the initial values of
the tunable parameters are set to the final value of the previous optimization run.

Default: 0

StopIfFeasible

Terminate optimization once a feasible solution satisfying the constraints is found:

• 'on' — Terminate as soon a feasible solution is found
• 'off' — Continue to search for solutions that are typically located further inside the

constraint region

The software ignores this option when you track a reference signal or your problem has a
cost.

Default: 'on'

UseParallel

Parallel computing option for fmincon, lsqnonlin, and patternsearch optimization
solvers:

• 'never' — Do not use parallel computing during optimization
• 'always' — Use parallel computing during optimization

Parallel Computing Toolbox software must be installed to enable parallel computing for
the optimization methods.

When set to 'always', the methods compute the following in parallel:

2 Class Reference

2-30

• fmincon — Finite difference gradients
• lsqnonlin — Finite difference gradients
• patternsearch — Poll and search set evaluation

Note: Parallel computing is not supported for fminsearch.

Default: 'never'

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Specify an Optimization Solver

opts = sdo.OptimizeOptions;

opts.Method = 'fminsearch';

See Also
sdo.optimize | sdo.getModelDependencies

How To
• “Optimization Options”
• “Speedup Response Optimization Using Parallel Computing”
• “Speedup Parameter Estimation Using Parallel Computing”

 sdo.ParameterSpace class

2-31

sdo.ParameterSpace class
Package: sdo

Specify probability distributions for model parameters

Description

Specify the probability distributions for model parameters, which define the parameter
space. You use the sdo.ParameterSpace object as an input to the sdo.sample
command and generate samples of the model parameters. The software generates these
samples as per the distributions specified for each parameter. You evaluate the cost
function for each of these samples using the sdo.evaluate command and analyze how
the model parameters influence the cost function.

Construction

ps = sdo.ParameterSpace(p) creates an sdo.ParameterSpace object for
the specified model parameters. The software assigns the parameter names to the
ParameterNames property and default values to the remaining properties, including
ParameterDistributions. The software specifies the uniform distribution for each
parameter in p and sets the values of the two parameters of the uniform distribution as
follows:

• Lower — Set to p.Minimum. If p.Minimum is equal to -Inf, then the software sets
Lower to 0.9*p.Value. Unless p.Value is equal to 0, in which case the software
sets Lower to -1.

• Upper — Set to p.Maximum. If p.Maximum is equal to Inf, then the software sets
Upper to 1.1*p.Value. Unless p.Value is equal to 0, in which case the software
sets Upper to 1.

ps = sdo.ParameterSpace(p,pdist) specifies the distribution of each parameter.

Input Arguments

p

Model parameters and states, specified as a vector of param.Continuous objects.

2 Class Reference

2-32

For example, sdo.getParameterFromModel('sdoHydraulicCylinder',
{'Ac','K'}).

pdist

Probability distribution of model parameters, specified as a vector of univariate
probability distribution objects.

• If pdist is the same size as p, the software specifies each entry of pdist as the
probability distribution of the corresponding parameter in p.

• If pdist contains only one object, the software specifies this object as the probability
distribution for all the parameters in p.

Use the makedist command to create a univariate probability distribution object. For
example, makedist('Normal','mu',100,'sigma',10).

To check if pdist is a univariate distribution object, run
isa(pdist,'prob.UnivariateDistribution').

Properties

ParameterNames

Model parameter names, specified as cell arrays of strings.

This property is ready only.

Default: ''

ParameterDistributions

Model parameter distributions, specified as a vector of
prob.UnivariateDistribution objects.

By default, the software specifies a uniform distribution for the model parameters
specified by p. For each parameter, the software sets the values of the two parameters of
the uniform distribution:

• Lower — Set to p.Minimum. If p.Minimum is equal to -Inf, then the software sets
Lower to 0.9*p.Value. Unless p.Value is equal to 0, in which case the software
sets Lower to -1.

 sdo.ParameterSpace class

2-33

• Upper — Set to p.Maximum. If p.Maximum is equal to Inf, then the software sets
Upper to 1.1*p.Value. Unless p.Value is equal to 0, in which case the software
sets Upper to 1.

Use the pdist input argument when constructing ps to set the value of this property.
Alternatively, use the sdo.ParameterSpace.setDistribution method after you
have constructed ps.

Default: []

RankCorrelation

Correlation between parameters, specified as a matrix.

When you call sdo.sample, the software generates samples that are correlated as
specified by this matrix (where the correlation refers to ranked correlation). You can
specify the sampling method using the Method property of an sdo.SampleOptions.

• If you specify Method as 'random' or 'lhs', the software uses the Iman-Conover
algorithm to impose the correlation specified by RankCorrelation.

• If you specify Method as 'copula', the software uses a copula to impose the
correlation specified by RankCorrelation. Use the MethodOptions property of the
sdo.SampleOptions object to specify the copula family.

Specify [] when the parameters are uncorrelated.

Default: []

Options

Sampling method options, specified as an sdo.SampleOptions object.

Default: sdo.SampleOptions

Notes

Text notes associated with ps, specified as a string or cell array of strings.

Default: ''

Default:

2 Class Reference

2-34

Methods

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Specify Parameter Distributions for Sampling

Obtain the model parameters of interest.

load_system('sdoHydraulicCylinder');

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

Construct an sdo.ParameterSpace object for Ac and K.

ps = sdo.ParameterSpace(p);

You can use ps as an input to sdo.sample and generate samples. By default, the
software specifies a uniform distribution for both parameters.

Suppose you want to specify the normal distribution for Ac and the uniform distribution
for K, with K in the [30000 70000] range.

pdistAc = makedist('Normal', 'mu',p(1).Value,'sigma',2);

pdistK = makedist('Uniform','lower',30000,'upper',70000);

ps1 = sdo.ParameterSpace(p,[pdistAc;pdistK]);

See Also
sdo.ParameterSpace.addParameter | makedist | sdo.getParameterFromModel
| sdo.sample

More About
• Class Attributes
• Property Attributes

 sdo.requirements.BodeMagnitude class

2-35

sdo.requirements.BodeMagnitude class

Package: sdo.requirements

Bode magnitude bound

Syntax

bode_req = sdo.requirements.BodeMagnitude

bode_req = sdo.requirements.BodeMagnitude(Name,Value)

Description

Specify frequency-dependent piecewise-linear upper and lower magnitude bounds on
a linear system. You can then optimize your model to meet the requirements using
sdo.optimize.

You can specify upper or lower bounds, include multiple linear edges, and extend them to
+ or –infinity..

You must have Simulink Control Design software to specify bode magnitude
requirements.

Construction

bode_req = sdo.requirements.BodeMagnitude creates an
sdo.requirements.BodeMagnitude object and assigns default values to its properties.

bode_req = sdo.requirements.BodeMagnitude(Name,Value) uses additional
options specified by one or more Name,Value pair arguments. Name is a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

2 Class Reference

2-36

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BoundFrequencies'

Frequency values for the gain bound.

Specify the start and end frequencies for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles, where each row specifies the start and
end frequencies of an edge in the piecewise-linear bound. The start and end frequencies
must define a positive length. The number of rows must match the number of rows of the
BoundMagnitudes property.

Use set to set this and the BoundMagnitudes properties simultaneously.

Use the FrequencyUnits property to specify the frequency units.

Default: [1 10]

'BoundMagnitudes'

Magnitude values for the gain bound.

Specify the start and end gain values for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles where each row specifies the start and
end gains of an edge in the piecewise-linear bound. The number of rows must match the
number of rows of the BoundFrequencies property.

Use set to set this and the BoundFrequencies properties simultaneously.

Use the MagnitudeUnits property to specify the magnitude units.

Default: [0 0]

'Description'

Requirement description. Must be a string.

 sdo.requirements.BodeMagnitude class

2-37

Default: ''

'FrequencyScale'

Frequency-axis scaling.

Use this property to determine the value of the bound between edge start and end points.
Must be one of the following strings:

• 'linear'

• 'log'

For example, if bound edges are at frequencies f1 and f2, and the bound is to be
evaluated at f3, the edges are interpolated as a straight lines. The x-axis is either linear
or logarithmic.

Default: 'log'

'FrequencyUnits'

Frequency units of the requirement. Must be one of the following strings:

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

2 Class Reference

2-38

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

'MagnitudeUnits'

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

'Name'

Requirement name. Must be a string.

Default: ''

'OpenEnd'

Extend bound in a negative or positive frequency direction.

Specify whether the first and last edge of the bound extends to –inf and +inf
respectively. Use to bound signals that extend beyond the frequency values specified by
the BoundFrequencies property.

Must be a 1x2 logical array of true or false. If true, the first or last edge of the
piecewise linear bound is extended in the negative or positive direction.

Default: [0 0]

 sdo.requirements.BodeMagnitude class

2-39

'Type'

Magnitude bound type. Must be:

• '<=' — Upper bound
• '>=' — Lower bound

Use to specify whether the piecewise-linear bound is an upper or lower bound. Use for
upper bound and for lower bound.

Properties

BoundFrequencies

Frequency values for the gain bound.

Specify the start and end frequencies for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles, where each row specifies the start and
end frequencies of an edge in the piecewise-linear bound. The start and end frequencies
must define a positive length. The number of rows must match the number of rows of the
BoundMagnitudes property.

Use set to set this and the BoundMagnitudes properties simultaneously.

Use the FrequencyUnits property to specify the frequency units.

Default: [1 10]

BoundMagnitudes

Magnitude values for the gain bound.

Specify the start and end gain values for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles where each row specifies the start and
end gains of an edge in the piecewise-linear bound. The number of rows must match the
number of rows of the BoundFrequencies property.

Use set to set this and the BoundFrequencies properties simultaneously.

Use the MagnitudeUnits property to specify the magnitude units.

Default: [0 0]

2 Class Reference

2-40

Description

Requirement description. Must be a string.

Default: ''

FrequencyScale

Frequency-axis scaling.

Use this property to determine the value of the bound between edge start and end points.
Must be one of the following strings:

• 'linear'

• 'log'

For example, if bound edges are at frequencies f1 and f2, and the bound is to be
evaluated at f3, the edges are interpolated as a straight lines. The x-axis is either linear
or logarithmic.

Default: 'log'

FrequencyUnits

Frequency units of the requirement. Must be one of the following strings:

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

 sdo.requirements.BodeMagnitude class

2-41

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

MagnitudeUnits

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

Name

Requirement name. Must be a string.

Default: ''

OpenEnd

Extend bound in a negative or positive frequency direction.

Specify whether the first and last edge of the bound extends to –inf and +inf
respectively. Use to bound signals that extend beyond the frequency values specified by
the BoundFrequencies property.

Must be a 1x2 logical array of true or false. If true, the first or last edge of the
piecewise linear bound is extended in the negative or positive direction.

2 Class Reference

2-42

Default: [0 0]

Type

Magnitude bound type. Must be:

• '<=' — Upper bound
• '>=' — Lower bound

Use to specify whether the piecewise-linear bound is an upper or lower bound. Use for
upper bound and for lower bound.

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a Bode magnitude requirements object and specify bound frequencies and
magnitudes.

r = sdo.requirements.BodeMagnitude;

set(r,'BoundFrequencies', [0.1 10; 10 100],...

'BoundMagnitudes',[1 1; 0.1 0.1])

Alternatively, you can specify the frequency and magnitude during construction.

r = sdo.requirements.BodeMagnitude(...

 'BoundFrequencies', [1 10; 10 100], ...

 'BoundMagnitudes', [1 1; 1 0]);

Alternatives

Use getbounds to get the bounds specified in a Check Bode Characteristics block.

 sdo.requirements.BodeMagnitude class

2-43

See Also
copy | get | set

How To
• Class Attributes
• Property Attributes

2 Class Reference

2-44

sdo.requirements.ClosedLoopPeakGain class
Package: sdo.requirements

Closed loop peak gain bound

Description
Specify lower or equality bounds on the closed loop peak gain of a linear system. The
closed loop can be formed using negative, positive or no feedback. You can then optimize
the model response to meet these bounds using sdo.optimize.

You must have Simulink Control Design software to specify closed-loop peak gain
bounds.

Construction
pkgain_req = sdo.requirements.ClosedLoopPeakGain creates a
sdo.requirements.ClosedLoopPeakGain object and assigns default values to its
properties.

pkgain_req = sdo.requirements.ClosedLoopPeakGain(Name,Value) uses
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Description'

Requirement description. Must be a string.

 sdo.requirements.ClosedLoopPeakGain class

2-45

Default: ''

'FeedbackSign'

Feedback loop sign to determine the peak gain of the linear system.

Must be –1 or 1. Use –1 if the loop has negative feedback and 1 if the loop has positive
feedback.

Default: –1

'MagnitudeUnits'

Magnitude units of the requirement.

Must be 'db' (decibels) or 'abs' (absolute units).

Default: 'abs'

'Name'

Requirement name. Must be a string.

Default: ''

'PeakGain'

Peak gain bound.

Default: 2

'Type'

Peak gain requirement type. Must be one of the following strings:

• '<=' — Upper bound
• '==' — Equality bound
• 'min' — Minimization objective

Default: '<='

2 Class Reference

2-46

Properties

Description

Requirement description. Must be a string.

Default: ''

FeedbackSign

Feedback loop sign to determine the peak gain of the linear system.

Must be –1 or 1. Use –1 if the loop has negative feedback and 1 if the loop has positive
feedback.

Default: –1

MagnitudeUnits

Magnitude units of the requirement.

Must be 'db' (decibels) or 'abs' (absolute units).

Default: 'abs'

Name

Requirement name. Must be a string.

Default: ''

PeakGain

Peak gain bound.

Default: 2

Type

Peak gain requirement type. Must be one of the following strings:

• '<=' — Upper bound
• '==' — Equality bound

 sdo.requirements.ClosedLoopPeakGain class

2-47

• 'min' — Minimization objective

Default: '<='

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a closed loop peak gain object and specify peak gain requirement.

r = sdo.requirements.ClosedLoopPeakGain;

r.PeakGain = 2;

Alternatively, you can specify the peak gain during construction:

r = sdo.requirements.ClosedLoopPeakGain('PeakGain',2);

Alternatives

Use getbounds to get the bounds specified in Check Nichols Characteristics block.

See Also
copy | get | set

How To
• Class Attributes
• Property Attributes

2 Class Reference

2-48

sdo.requirements.GainPhaseMargin class
Package: sdo.requirements

Gain and phase margin bounds

Description

Specify lower or equality bounds on the gain and phase margin of a linear system. You
can then optimize the model response to meet the bounds using sdo.optimize.

You must have Simulink Control Design software to specify gain and phase margin
requirements.

Construction

gainphase_req = sdo.requirements.GainPhaseMargin creates a
sdo.requirements.GainPhaseMargin object and assigns default values to its
properties.

gainphase_req = sdo.requirements.GainPhaseMargin(Name,Value) uses
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Description'

Requirement description. Must be a string.

 sdo.requirements.GainPhaseMargin class

2-49

Default: ''

'FeedbackSign'

Feedback loop sign to determine the gain and phase margins of the linear system.

Must be –1 or 1. Use –1 if the loop has negative feedback and 1 if the loop has positive
feedback.

Default: –1

'GainMargin'

Gain margin bound. Use MagnitudeUnits to specify the gain units. Set to [] to specify a
bound on the phase margin only.

Default: 10

'MagnitudeUnits'

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

'Name'

Requirement name. Must be a string.

Default: ''

'PhaseMargin'

Phase margin bound. Must be in degrees and a positive finite scalar. Set to [] to specify
a bound on the gain margin only.

Default: 60

'PhaseUnits'

Phase units of the requirement. Must be one of the following strings:

2 Class Reference

2-50

• 'deg' (degrees)
• 'rad' (radians)

Default: 'deg'

'Type'

Gain and phase margin requirement type. Must be one of the following strings:

• '>=' — Lower bound
• '==' — Equality bound
• 'max' — Maximization objective

Default: '>='

Properties

Description

Requirement description. Must be a string.

Default: ''

FeedbackSign

Feedback loop sign to determine the gain and phase margins of the linear system.

Must be –1 or 1. Use –1 if the loop has negative feedback and 1 if the loop has positive
feedback.

Default: –1

GainMargin

Gain margin bound. Use MagnitudeUnits to specify the gain units. Set to [] to specify a
bound on the phase margin only.

Default: 10

 sdo.requirements.GainPhaseMargin class

2-51

MagnitudeUnits

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

Name

Requirement name. Must be a string.

Default: ''

PhaseMargin

Phase margin bound. Must be in degrees and a positive finite scalar. Set to [] to specify
a bound on the gain margin only.

Default: 60

PhaseUnits

Phase units of the requirement. Must be one of the following strings:

• 'deg' (degrees)
• 'rad' (radians)

Default: 'deg'

Type

Gain and phase margin requirement type. Must be one of the following strings:

• '>=' — Lower bound
• '==' — Equality bound
• 'max' — Maximization objective

Default: '>='

2 Class Reference

2-52

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a gain and phase margin object and specify gain and phase margin
requirement.

r = sdo.requirements.GainPhaseMargin;

r.GainMargin = 5;

r.PhaseMargin = 55;

Alternatively, you can specify the gain and phase margins during construction.

 r = sdo.requirements.GainPhaseMargin(...

 'GainMargin',5, ...

 'PhaseMargin', 55);

Alternatives

Use getbounds to get the bounds specified in a Check Gain and Phase Margins and
Check Nichols Characteristics block.

See Also
copy | get | set

How To
• Class Attributes
• Property Attributes

 sdo.requirements.OpenLoopGainPhase class

2-53

sdo.requirements.OpenLoopGainPhase class
Package: sdo.requirements

Nichols response bound

Description

Specify piecewise-linear bounds on the Nichols (gain-phase) response of a linear system.
You can then optimize the model response to meet these bounds using sdo.optimize.

You can specify an upper or lower bound, include multiple linear edges, and extend the
bounds to + or –inf.

You must have Simulink Control Design software to specify open-loop gain and phase
requirements.

Construction

olgainphase_req = sdo.requirements.OpenLoopGainPhase creates a
sdo.requirements.OpenLoopGainPhase object and assigns default values to its
properties.

gainphase_req = sdo.requirements.OpenLoopGainPhase(Name,Value)

uses additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

2 Class Reference

2-54

'BoundGains'

Gain values for a piecewise linear bound.

Specify the start and end values in decibles for all the edges in the piecewise-linear
bound. The property must be a nx2 array of finite doubles, where each row specifies the
start and end gain values of an edge. The number of rows must match the number of
rows of the BoundPhases property.

Use set to set this and the BoundPhases properties simultaneously.

Default: [-10 -10]

'BoundPhases'

Phase values for a piecewise-linear bound.

Specify the start and end values in degrees for all the edges in the piecewise-linear
bound. The property must be a nx2 array of finite doubles, where each row specifies the
start and end phase values of an edge. The number of rows must match the number of
rows of the BoundGains property.

Use set to set this and the BoundGains properties simultaneously.

Default: [-180 -90]

'Description'

Requirement description. Must be a string.

Default: ''

'MagnitudeUnits'

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

'Name'

Requirement name. Must be a string.

 sdo.requirements.OpenLoopGainPhase class

2-55

Default: ''

'OpenEnd'

Extend bound in a negative or positive time direction.

Use to bound signals that extend beyond the coordinates specified by the BoundPhases
and BoundGains properties.

Must be a 1x2 logical array. If true, the first or last edge of the bound is extended to
infinity.

Default: [0 0]

'PhaseUnits'

Phase units of the requirement. Must be one of the following strings:

• 'deg' (degrees)
• 'rad' (radians)

Default: 'deg'

'Type'

Gain and phase requirement type. Must be one of the following strings:

• '>=' — Lower bound
• '<=' — Upper bound

Default: '>='

Properties

BoundGains

Gain values for a piecewise linear bound.

Specify the start and end values in decibles for all the edges in the piecewise-linear
bound. The property must be a nx2 array of finite doubles, where each row specifies the

2 Class Reference

2-56

start and end gain values of an edge. The number of rows must match the number of
rows of the BoundPhases property.

Use set to set this and the BoundPhases properties simultaneously.

Default: [-10 -10]

BoundPhases

Phase values for a piecewise-linear bound.

Specify the start and end values in degrees for all the edges in the piecewise-linear
bound. The property must be a nx2 array of finite doubles, where each row specifies the
start and end phase values of an edge. The number of rows must match the number of
rows of the BoundGains property.

Use set to set this and the BoundGains properties simultaneously.

Default: [-180 -90]

Description

Requirement description. Must be a string.

Default: ''

MagnitudeUnits

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

Name

Requirement name. Must be a string.

Default: ''

OpenEnd

Extend bound in a negative or positive time direction.

 sdo.requirements.OpenLoopGainPhase class

2-57

Use to bound signals that extend beyond the coordinates specified by the BoundPhases
and BoundGains properties.

Must be a 1x2 logical array. If true, the first or last edge of the bound is extended to
infinity.

Default: [0 0]

PhaseUnits

Phase units of the requirement. Must be one of the following strings:

• 'deg' (degrees)
• 'rad' (radians)

Default: 'deg'

Type

Gain and phase requirement type. Must be one of the following strings:

• '>=' — Lower bound
• '<=' — Upper bound

Default: '>='

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct an open-loop gain and phase object, and specify gain and phase requirements.

r = sdo.requirements.OpenLoopGainPhase;

2 Class Reference

2-58

set(r,'BoundPhases',[-120 -120; -120 -150; -150 -180],...

 'BoundGains',[20 0; 0 -20; -20 -20]);

Alternatively, you can specify the gain and phase requirements during construction:

r = sdo.requirements.OpenLoopGainPhase('BoundPhases',...

 [-120 -120; -120 -150; -150 -180],'BoundGains',...

 [20 0; 0 -20; -20 -20]);

Alternatives

Use getbounds to get the bounds specified in a Check Nichols Characteristics block.

See Also
copy | get | set

How To
• Class Attributes
• Property Attributes

 sdo.requirements.PZDampingRatio class

2-59

sdo.requirements.PZDampingRatio class
Package: sdo.requirements

Damping ratio bound

Description

Specify bounds on the damping ratio of the poles of a linear system. You can then
optimize the model response to meet these bounds using sdo.optimize. You can also
use this object to specify overshoot bound.

You must have Simulink Control Design software to specify damping ratio requirements.

Construction

damp_req = sdo.requirements.PZDampingRatio creates a
sdo.requirements.PZDampingRatio object and assigns default values to its
properties.

gainphase_req = sdo.requirements.PZDampingRatio(Name,Value) uses
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'DampingRatio'

Damping ratio bound. Must be a finite scalar between 0 and 1.

2 Class Reference

2-60

Default: 0.7071

'Description'

Requirement description. Must be a string.

Default: ''

'Name'

Requirement name. Must be a string.

Default: ''

'Type'

Damping ratio bound type. Must be one of the following strings:

• '<=' — Upper bound
• '>=' — Lower bound
• '==' — Equality bound
• 'max' — Maximization objective

Default: '>='

Properties

DampingRatio

Damping ratio bound. Must be a finite scalar between 0 and 1.

Default: 0.7071

Description

Requirement description. Must be a string.

Default: ''

Name

Requirement name. Must be a string.

 sdo.requirements.PZDampingRatio class

2-61

Default: ''

Type

Damping ratio bound type. Must be one of the following strings:

• '<=' — Upper bound
• '>=' — Lower bound
• '==' — Equality bound
• 'max' — Maximization objective

Default: '>='

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a damping ratio object and specify the damping ratio.

 r = sdo.requirements.PZDampingRatio;

 r.DampingRatio = 0.1;

Alternatively, you can specify the damping ratio during construction.

 r = sdo.requirements.PZDampingRatio('DampingRatio',0.1);

Alternatives

Use getbounds to get the bounds specified in a Check Pole-Zero Characteristics block.

2 Class Reference

2-62

See Also
copy | get | set

How To
• Class Attributes
• Property Attributes

 sdo.requirements.PZNaturalFrequency class

2-63

sdo.requirements.PZNaturalFrequency class
Package: sdo.requirements

Natural frequency bound

Description

Specify bounds on the natural frequency of the poles of a linear system. You can then
optimize the model response to meet these bounds using sdo.optimize.

You must have Simulink Control Design software to specify natural frequency
requirements.

Construction

pznatfreq_req = sdo.requirements.PZNaturalFrequency creates a
sdo.requirements.PZNaturalFrequency object and assigns default values to its
properties.

pznatfreq_req = sdo.requirements.pznatfreq_req(Name,Value) uses
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Description'

Requirement description. Must be a string.

2 Class Reference

2-64

Default: ''

'FrequencyUnits'

Frequency units of the requirement. Must be one of the following strings:

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

'Name'

Requirement name. Must be a string.

 sdo.requirements.PZNaturalFrequency class

2-65

Default: ''

'NaturalFrequency'

Natural frequency bound. Must be in radians/second and a positive finite scalar.

Default: 2

'Type'

Natural frequency bound type. Must be one of the following strings:

• '<=' — Upper bound
• '>=' — Lower bound
• '==' — Equality bound
• 'max' — Maximization objective

Default: '>='

Properties

Description

Requirement description. Must be a string.

Default: ''

FrequencyUnits

Frequency units of the requirement. Must be one of the following strings:

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

2 Class Reference

2-66

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

Name

Requirement name. Must be a string.

Default: ''

NaturalFrequency

Natural frequency bound. Must be in radians/second and a positive finite scalar.

Default: 2

Type

Natural frequency bound type. Must be one of the following strings:

• '<=' — Upper bound
• '>=' — Lower bound

 sdo.requirements.PZNaturalFrequency class

2-67

• '==' — Equality bound
• 'max' — Maximization objective

Default: '>='

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a natural frequency object and specify the natural frequency.

r = sdo.requirements.PZNaturalFrequency;

r.NaturalFrequency = 1;

Alternatively, you can specify the natural frequency during construction.

r = sdo.requirements.PZNaturalFrequency(...

 'NaturalFrequency',1);

Alternatives

Use getbounds to get the bounds specified in a Check Pole-Zero Characteristics block.

See Also
copy | get | set

How To
• Class Attributes
• Property Attributes

2 Class Reference

2-68

sdo.requirements.PZSettlingTime class
Package: sdo.requirements

Settling time bound

Description

Specify bounds on the real component of the poles of a linear system. The real component
of poles are used to approximate the settling time. You can then optimize the model
response to meet these bounds using sdo.optimize.

You must have Simulink Control Design software to specify settling time requirements.

Construction

settime_req = sdo.requirements.PZSettlingTime creates a
sdo.requirements.PZSettlingTime object and assigns default values to its
properties.

settime_req = sdo.requirements.PZSettlingTime(Name,Value) uses
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Description'

Requirement description. Must be a string.

 sdo.requirements.PZSettlingTime class

2-69

Default: ''

'Name'

Requirement name. Must be a string.

Default: ''

'SettlingTime'

Settling time bound. Must be in seconds and a positive finite scalar.

Default: 2

'TimeUnits'

Time units of the requirement. Must be one of the following strings:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Default: 'second'

'Type'

Settling time bound type. Must be one of the following strings:

• '<=' — Upper bound
• '>=' — Lower bound
• '==' — Equality bound
• 'min' — Minimization objective

2 Class Reference

2-70

Default: '<='

Properties

Description

Requirement description. Must be a string.

Default: ''

Name

Requirement name. Must be a string.

Default: ''

SettlingTime

Settling time bound. Must be in seconds and a positive finite scalar.

Default: 2

TimeUnits

Time units of the requirement. Must be one of the following strings:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Default: 'second'

 sdo.requirements.PZSettlingTime class

2-71

Type

Settling time bound type. Must be one of the following strings:

• '<=' — Upper bound
• '>=' — Lower bound
• '==' — Equality bound
• 'min' — Minimization objective

Default: '<='

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a settling time object and specify the settling time requirement.

r = sdo.requirements.PZSettlingTime;

r.SettlingTime = 2.5;

Alternatively, you can specify the setting time during construction.

r = sdo.requirements.PZSettlingTime('SettlingTime',2.5);

Alternatives

Use getbounds to get the bounds specified in a Check Pole-Zero Characteristics block.

See Also
copy | get | set

2 Class Reference

2-72

How To
• Class Attributes
• Property Attributes

 sdo.requirements.SignalBound class

2-73

sdo.requirements.SignalBound class
Package: sdo.requirements

Piecewise-linear amplitude bound

Description

Specify piecewise-linear upper or lower amplitude bounds on a time-domain signal. You
can then optimize the model response to meet these bounds using sdo.optimize.

You can include multiple linear edges, and extend to + or –inf.

Construction

sig_req = sdo.requirements.SignalBound creates an
sdo.requirements.SignalBound object and assigns default values to its properties.

sig_req = sdo.requirements.SignalBound(Name,Value) uses additional
options specified by one or more Name,Value pair arguments. Name is a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'BoundMagnitudes'

Magnitude values for the piecewise-linear bound.

Specify the start and end magnitude values for all edges in the bound. The property
must be a nx2 array of finite doubles, where each row specifies the start and end

2 Class Reference

2-74

magnitude values of an edge. The number of rows must match the number of rows of the
BoundTimes property.

Use set to set this and BoundTimes properties simultaneously.

Default: [1 1]

'BoundTimes'

Time values of the piecewise-linear bound.

Specify the start and end times for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles where each row specifies the start and end
times of an edge. The start and end times must define a positive length. The number of
rows must match the number of rows of the BoundMagnitudes property.

Use set to set this and BoundMagnitudes properties simultaneously.

Default: [0 10]

'Description'

Requirement description. Must be a string.

Default: ''

'Name'

Requirement name. Must be a string.

Default: ''

'OpenEnd'

Extend bound in a negative or positive time direction.

Specify whether the first and last edge of the bound extends to –inf and +inf
respectively. Use to bound signals that extend beyond the time values specified by the
BoundTimes property.

Must be a 1x2 logical array. If true, the first or last edge of the bound is extended in a
negative or positive direction, respectively.

Default: [0 0]

 sdo.requirements.SignalBound class

2-75

'TimeUnits'

Time units of the requirement. Must be one of the following strings:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Default: 'second'

'Type'

Bound type.

Specify whether the piecewise-linear requirement is an upper or lower bound. Must be
one of the following strings:

• '<=' — Upper bound
• '>=' — Lower bound

Default: '<='

Properties

BoundMagnitudes

Magnitude values for the piecewise-linear bound.

Specify the start and end magnitude values for all edges in the bound. The property
must be a nx2 array of finite doubles, where each row specifies the start and end

2 Class Reference

2-76

magnitude values of an edge. The number of rows must match the number of rows of the
BoundTimes property.

Use set to set this and BoundTimes properties simultaneously.

Default: [1 1]

BoundTimes

Time values of the piecewise-linear bound.

Specify the start and end times for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles where each row specifies the start and end
times of an edge. The start and end times must define a positive length. The number of
rows must match the number of rows of the BoundMagnitudes property.

Use set to set this and BoundMagnitudes properties simultaneously.

Default: [0 10]

Description

Requirement description. Must be a string.

Default: ''

Name

Requirement name. Must be a string.

Default: ''

OpenEnd

Extend bound in a negative or positive time direction.

Specify whether the first and last edge of the bound extends to –inf and +inf
respectively. Use to bound signals that extend beyond the time values specified by the
BoundTimes property.

Must be a 1x2 logical array. If true, the first or last edge of the bound is extended in a
negative or positive direction, respectively.

Default: [0 0]

 sdo.requirements.SignalBound class

2-77

TimeUnits

Time units of the requirement. Must be one of the following strings:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Default: 'second'

Type

Bound type.

Specify whether the piecewise-linear requirement is an upper or lower bound. Must be
one of the following strings:

• '<=' — Upper bound
• '>=' — Lower bound

Default: '<='

Methods

Examples

Construct a signal bound object and specify piecewise-linear bounds.

r = sdo.requirements.SignalBound;

2 Class Reference

2-78

set(r,'BoundTimes', [0 10; 10 20],...

 'BoundMagnitudes', [1.1 1.1; 1.01 1.01])

Alternatively, you can specify the bounds during construction:

r = sdo.requirements.SignalBound(...

 'BoundTimes',[0 10; 10 20],...

 'BoundMagnitudes',[1.1 1.1; 1.01 1.01]);

Alternatives

Use getbounds to get the bounds specified in a Check Custom Bounds block.

See Also
copy | get | set

How To
• Class Attributes
• Property Attributes

 sdo.requirements.SignalTracking class

2-79

sdo.requirements.SignalTracking class
Package: sdo.requirements

Reference signal to track

Description

Specify a tracking requirement on a time-domain signal. You can then optimize the
model response to track the reference using sdo.optimize.

You can specify an equality, upper or lower bound requirement.

Construction

track_req = sdo.requirements.SignalTracking creates an
sdo.requirements.SignalTracking object and assigns default values to its
properties.

track_req = sdo.requirements.SignalTracking(Name,Value) uses
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'AbsTol'

Absolute tolerance used to determine bounds as the signal approaches the reference
signal. The bounds on the reference signal are given by:

2 Class Reference

2-80

yu = (1 + RelTol)yr + AbsTol

yl = (1 –RelTol)yr – AbsTol

where yr is the value of the reference at a certain time, yu and yl are the upper and lower
tolerance bounds corresponding to that time point.

Default: 0

'Description'

Requirement description. Must be a string.

Default: ''

'InterpolationTimes'

Time points to use when comparing reference and testpoint signals. Linear interpolation
is used to compare the signals at the same timepoints.

Must be one of the following strings:

• 'Reference only' — Compare the signals at the time points of the reference signal
only

• 'Testpoint only' — Compare the signals at the time points of the testpoint signal
only

• 'Reference and Testpoint' — Compare the signals at the time points of both the
reference and testpoint signals

Default: 'Reference only'

'Method'

Algorithm for evaluating the requirement when the Type property is '=='.

When the requirement is evaluated using evalRequirement, the software computes the
error between the reference and testpoint signals. This property specifies how the error
signal e(t) = ys(t)–yr(t) should be processed.

Must be one of the following strings:

• 'SSE'

 sdo.requirements.SignalTracking class

2-81

• 'SAE'

• 'Residuals'

Default: 'SSE'

'Name'

Requirement name. Must be a string.

Default: ''

'Normalize'

Enable or disable normalization when evaluating the requirement. The maximum
absolute value of the reference signal is used for normalization. Must be 'on' or 'off'.

Default: 'on'

'ReferenceSignal'

Reference signal to track. Must be a MATLAB timeseries object with real finite data
points.

Default: [1x1 timeseries]

'RelTol'

Relative tolerance used to determine bounds as the signal approaches the reference
signal. The bounds on the reference signal are given by:

yu = (1 + RelTol)yr + AbsTol

yl = (1 — RelTol)yr— AbsTol

Default: 0

'RobustCost'

Enable or disable robust treatment of outliers when evaluating the requirement. The
software uses a Huber loss function to handle the outliers in the cost function and
improves the fit quality. This option reduces the influence of outliers on the estimation
without you manually modifying your data.

2 Class Reference

2-82

Must be one of the following:

• 'on' — When you call the evalRequirement method, the software uses a Huber
loss function to evaluate the cost for the tracking error outliers. The tracking error
is calculated as e(t)=yref(t)-ytest(t). The software uses the error statistics to identify the
outliers.

The exact cost function used, F(x), depends on the requirement evaluation Method.

Method Name Cost Function for Nonoutliers Cost Function for Outliers

'SSE'
F x e t e t

t NOL

() () ()= ¥

Œ

Â

NOL is the set of
nonoutlier samples.

F x w e t

t OL

() | ()|= ¥

Œ

Â

w is a linear weight. OL is
the set of outlier samples.

'SAE'
F x e t

t NOL

() | ()|=

Œ

Â

NOL is the set of
nonoutlier samples.

F x w

t OL

() =

Œ

Â

w is a constant value. OL is
the set of outlier samples.

'Residuals' The software does not remove the outliers.

F x

e

e N

()

()

()

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

M

N is the number of samples.
• 'off'

Default: 'off'

'Type'

Tracking requirement type. Must be one of the following strings:

• '==' — Tracking objective.

'<=' — Upper bound

 sdo.requirements.SignalTracking class

2-83

• '>=' — Lower bound

Default: '=='

'Weights'

Weights to use when evaluating the tracking error between the reference and testpoint
signals. Use weights to increase or decrease the significance of different time points.

Must be real finite positive vector with the same number of elements as the Time
property of the MATLAB timeseries object in the ReferenceSignal property.

Properties

AbsTol

Absolute tolerance used to determine bounds as the signal approaches the reference
signal. The bounds on the reference signal are given by:

yu = (1 + RelTol)yr + AbsTol

yl = (1 –RelTol)yr – AbsTol

where yr is the value of the reference at a certain time, yu and yl are the upper and lower
tolerance bounds corresponding to that time point.

Default: 0

Description

Requirement description. Must be a string.

Default: ''

InterpolationTimes

Time points to use when comparing reference and testpoint signals. Linear interpolation
is used to compare the signals at the same timepoints.

Must be one of the following strings:

2 Class Reference

2-84

• 'Reference only' — Compare the signals at the time points of the reference signal
only

• 'Testpoint only' — Compare the signals at the time points of the testpoint signal
only

• 'Reference and Testpoint' — Compare the signals at the time points of both the
reference and testpoint signals

Default: 'Reference only'

Method

Algorithm for evaluating the requirement when the Type property is '=='.

When the requirement is evaluated using evalRequirement, the software computes the
error between the reference and testpoint signals. This property specifies how the error
signal e(t) = ys(t)–yr(t) should be processed.

Must be one of the following strings:

• 'SSE'

• 'SAE'

• 'Residuals'

Default: 'SSE'

Name

Requirement name. Must be a string.

Default: ''

Normalize

Enable or disable normalization when evaluating the requirement. The maximum
absolute value of the reference signal is used for normalization. Must be 'on' or 'off'.

Default: 'on'

ReferenceSignal

Reference signal to track. Must be a MATLAB timeseries object with real finite data
points.

 sdo.requirements.SignalTracking class

2-85

Default: [1x1 timeseries]

RelTol

Relative tolerance used to determine bounds as the signal approaches the reference
signal. The bounds on the reference signal are given by:

yu = (1 + RelTol)yr + AbsTol

yl = (1 — RelTol)yr— AbsTol

Default: 0

RobustCost

Enable or disable robust treatment of outliers when evaluating the requirement. The
software uses a Huber loss function to handle the outliers in the cost function and
improves the fit quality. This option reduces the influence of outliers on the estimation
without you manually modifying your data.

Must be one of the following:

• 'on' — When you call the evalRequirement method, the software uses a Huber
loss function to evaluate the cost for the tracking error outliers. The tracking error
is calculated as e(t)=yref(t)-ytest(t). The software uses the error statistics to identify the
outliers.

The exact cost function used, F(x), depends on the requirement evaluation Method.

Method Name Cost Function for Nonoutliers Cost Function for Outliers

'SSE'
F x e t e t

t NOL

() () ()= ¥

Œ

Â

NOL is the set of
nonoutlier samples.

F x w e t

t OL

() | ()|= ¥

Œ

Â

w is a linear weight. OL is
the set of outlier samples.

'SAE'
F x e t

t NOL

() | ()|=

Œ

Â

NOL is the set of
nonoutlier samples.

F x w

t OL

() =

Œ

Â

w is a constant value. OL is
the set of outlier samples.

2 Class Reference

2-86

Method Name Cost Function for Nonoutliers Cost Function for Outliers

'Residuals' The software does not remove the outliers.

F x

e

e N

()

()

()

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

M

N is the number of samples.
• 'off'

Default: 'off'

Type

Tracking requirement type. Must be one of the following strings:

• '==' — Tracking objective.

'<=' — Upper bound
• '>=' — Lower bound

Default: '=='

Weights

Weights to use when evaluating the tracking error between the reference and testpoint
signals. Use weights to increase or decrease the significance of different time points.

Must be real finite positive vector with the same number of elements as the Time
property of the MATLAB timeseries object in the ReferenceSignal property.

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

 sdo.requirements.SignalTracking class

2-87

Examples

Construct a signal tracking object and specify a reference signal.

r = sdo.requirements.SignalTracking;

r.ReferenceSignal = timeseries(1-exp(-(0:10)'));

Alternatively, you can specify the reference signal during construction.

r = sdo.requirements.SignalTracking(...

 'ReferenceSignal',timeseries(1-exp(-(0:10)')));

Alternatives

Use getbounds to get the bounds specified in a Check Against Reference block.

See Also
copy | get | set

How To
• Class Attributes
• Property Attributes

2 Class Reference

2-88

sdo.requirements.SingularValue class

Package: sdo.requirements

Singular value bound

Description

Specify frequency-dependent piecewise-linear upper and lower bounds on the singular
values of a linear system. You can then optimize the model response to meet these
bounds using sdo.optimize to .

You can specify upper or lower bounds, include multiple edges, and extend them to + or –
infinity.

You must have Simulink Control Design software to specify singular value requirements.

Construction

singval_req = sdo.requirements.SingularValue creates a
sdo.requirements.SingularValue object and assigns default values to its properties.

singval_req = sdo.requirements.SingularValue(Name,Value) uses
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 sdo.requirements.SingularValue class

2-89

'BoundFrequencies'

Frequency values for the gain bound.

Specify the start and end frequencies for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles, where each row specifies the start and
end frequencies of an edge in the piecewise-linear bound. The start and end frequencies
must define a positive length. The number of rows must match the number of rows of the
BoundMagnitudes property.

Use set to set this and the BoundMagnitudes properties simultaneously.

Use the FrequencyUnits property to specify the frequency units.

Default: [1 10]

'BoundMagnitudes'

Magnitude values for the gain bound.

Specify the start and end gain values for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles where each row specifies the start and
end gains of an edge in the piecewise-linear bound. The number of rows must match the
number of rows of the BoundFrequencies property.

Use set to set this and the BoundFrequencies properties simultaneously.

Use the MagnitudeUnits property to specify the magnitude units.

Default: [0 0]

'Description'

Requirement description. Must be a string.

Default: ''

'FrequencyScale'

Frequency-axis scaling.

Use this property to determine the value of the bound between edge start and end points.
Must be one of the following strings:

2 Class Reference

2-90

• 'linear'

• 'log'

For example, if bound edges are at frequencies f1 and f2, and the bound is to be
evaluated at f3, the edges are interpolated as a straight lines. The x-axis is either linear
or logarithmic.

Default: 'log'

'FrequencyUnits'

Frequency units of the requirement. Must be one of the following strings:

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

 sdo.requirements.SingularValue class

2-91

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

'MagnitudeUnits'

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

'Name'

Requirement name. Must be a string.

Default: ''

'OpenEnd'

Extend bound in a negative or positive frequency direction.

Specify whether the first and last edge of the bound extends to –inf and +inf
respectively. Use to bound signals that extend beyond the frequency values specified by
the BoundFrequencies property.

Must be a 1x2 logical array of true or false. If true, the first or last edge of the
piecewise linear bound is extended in the negative or positive direction.

Default: [0 0]

'Type'

Magnitude bound type. Must be:

• '<=' — Upper bound
• '>=' — Lower bound

Use to specify whether the piecewise-linear bound is an upper or lower bound. Use for
upper bound and for lower bound.

2 Class Reference

2-92

Properties

BoundFrequencies

Frequency values for the gain bound.

Specify the start and end frequencies for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles, where each row specifies the start and
end frequencies of an edge in the piecewise-linear bound. The start and end frequencies
must define a positive length. The number of rows must match the number of rows of the
BoundMagnitudes property.

Use set to set this and the BoundMagnitudes properties simultaneously.

Use the FrequencyUnits property to specify the frequency units.

Default: [1 10]

BoundMagnitudes

Magnitude values for the gain bound.

Specify the start and end gain values for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles where each row specifies the start and
end gains of an edge in the piecewise-linear bound. The number of rows must match the
number of rows of the BoundFrequencies property.

Use set to set this and the BoundFrequencies properties simultaneously.

Use the MagnitudeUnits property to specify the magnitude units.

Default: [0 0]

Description

Requirement description. Must be a string.

Default: ''

FrequencyScale

Frequency-axis scaling.

 sdo.requirements.SingularValue class

2-93

Use this property to determine the value of the bound between edge start and end points.
Must be one of the following strings:

• 'linear'

• 'log'

For example, if bound edges are at frequencies f1 and f2, and the bound is to be
evaluated at f3, the edges are interpolated as a straight lines. The x-axis is either linear
or logarithmic.

Default: 'log'

FrequencyUnits

Frequency units of the requirement. Must be one of the following strings:

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

2 Class Reference

2-94

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

MagnitudeUnits

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

Name

Requirement name. Must be a string.

Default: ''

OpenEnd

Extend bound in a negative or positive frequency direction.

Specify whether the first and last edge of the bound extends to –inf and +inf
respectively. Use to bound signals that extend beyond the frequency values specified by
the BoundFrequencies property.

Must be a 1x2 logical array of true or false. If true, the first or last edge of the
piecewise linear bound is extended in the negative or positive direction.

Default: [0 0]

Type

Magnitude bound type. Must be:

• '<=' — Upper bound
• '>=' — Lower bound

 sdo.requirements.SingularValue class

2-95

Use to specify whether the piecewise-linear bound is an upper or lower bound. Use for
upper bound and for lower bound.

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a singular value object and specify bound frequencies and magnitudes.

r = sdo.requirements.SingularValue;

set(r,'BoundFrequencies',[1 10; 10 100],...

 'BoundMagnitudes',[1 1; 1 0]);

Alternatively, you can specify the frequency and magnitude during construction.

r = sdo.requirements.SingularValue(...

 'BoundFrequencies', [1 10; 10 100], ...

 'BoundMagnitudes', [1 1; 1 0]);

Alternatives

Use getbounds to get the bounds specified in a Check Singular Value Characteristics
block.

See Also
copy | get | set

How To
• Class Attributes

2 Class Reference

2-96

• Property Attributes

 sdo.requirements.StepResponseEnvelope class

2-97

sdo.requirements.StepResponseEnvelope class
Package: sdo.requirements

Step response bound on signal

Description

Specify a step response envelope requirement on a time-domain signal. Step response
characteristics such as rise-time and percentage overshoot define the step response
envelope.

Settling timeRise time

% Undershoot

% Settling
% Overshoot

% Rise

Final
value

Initial
value

Construction

step_req = sdo.requirements.StepResponseEnvelope creates an
sdo.requirements.StepResponseEnvelope object and assigns default values to its
properties.

step_req = sdo.requirements.StepResponseEnvelope(Name,Value) uses
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside

2 Class Reference

2-98

single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Description'

Requirement description. Must be a string.

Default: ''

'FinalValue'

Final value of the step response. Must be a finite real scalar not equal to the InitialValue
property.

Default: 1

'InitialValue'

Value of the signal level before the step response starts. Must be a finite real scalar not
equal to the FinalValue. property.

Default: 0

'Name'

Requirement name. Must be a string.

Default: ''

'PercentOvershoot'

The percentage amount by which the signal can exceed the final value before settling.

Must be a real finite scalar between [0 100] and greater than PercentSettling.

 sdo.requirements.StepResponseEnvelope class

2-99

Use set to set this and the PercentSettling properties simultaneously.

Default: 10

'PercentRise'

The percentage of final value used with the RiseTime property to define the overall rise
time characteristics.

Must be a real finite scalar between [0 100] and less than (100–PercentSettling).

Use set to set this and the PercentSettling properties simultaneously.

Default: 80

'PercentSettling'

The percentage of the final value that defines the settling range of settling time
characteristic specified in the SettlingTime property.

Must be a real positive finite scalar between [0 100] and less than (100 – PercentRise)
and less than PercentOvershoot.

Use set to set this and the PercentOvershoot and PercentRise properties
simultaneously.

Default: 1

'PercentUndershoot'

The percentage amount by which the signal can undershoot the initial value.

Must be a positive finite scalar between [0 100].

Default: 1

'RiseTime'

Time taken, in seconds, for the signal to reach a percentage of the final value specified in
PercentRise.

Must be a finite positive real scalar and less than the SettlingTime. Time is relative to
the StepTime.

2 Class Reference

2-100

Use set to set this and the StepTime and SettlingTime properties simultaneously.

Default: 5

'SettlingTime'

Time taken, in seconds, for the signal to settle within a specified range around the final
value. This settling range is defined as the final value plus or minus the percentage of
the final value, specified in PercentSettling.

Must be a finite positive real scalar, greater than RiseTime. Time is relative to the
StepTime.

Use set to set this and the RiseTime properties simultaneously.

Default: 7

'StepTime'

Time, in seconds, when the step response starts.

Must be a finite real nonnegative scalar, less than the RiseTime property.

Use set to set this and the RiseTime properties simultaneously.

Default: 0

'TimeUnits'

Time units of the requirement. Must be one of the following strings:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

 sdo.requirements.StepResponseEnvelope class

2-101

• 'years'

Default: 'second'

'Type'

Step response bound type.

This property is read-only and set to '<='.

Properties

Description

Requirement description. Must be a string.

Default: ''

FinalValue

Final value of the step response. Must be a finite real scalar not equal to the InitialValue
property.

Default: 1

InitialValue

Value of the signal level before the step response starts. Must be a finite real scalar not
equal to the FinalValue. property.

Default: 0

Name

Requirement name. Must be a string.

Default: ''

PercentOvershoot

The percentage amount by which the signal can exceed the final value before settling.

Must be a real finite scalar between [0 100] and greater than PercentSettling.

2 Class Reference

2-102

Use set to set this and the PercentSettling properties simultaneously.

Default: 10

PercentRise

The percentage of final value used with the RiseTime property to define the overall rise
time characteristics.

Must be a real finite scalar between [0 100] and less than (100–PercentSettling).

Use set to set this and the PercentSettling properties simultaneously.

Default: 80

PercentSettling

The percentage of the final value that defines the settling range of settling time
characteristic specified in the SettlingTime property.

Must be a real positive finite scalar between [0 100] and less than (100 – PercentRise)
and less than PercentOvershoot.

Use set to set this and the PercentOvershoot and PercentRise properties
simultaneously.

Default: 1

PercentUndershoot

The percentage amount by which the signal can undershoot the initial value.

Must be a positive finite scalar between [0 100].

Default: 1

RiseTime

Time taken, in seconds, for the signal to reach a percentage of the final value specified in
PercentRise.

Must be a finite positive real scalar and less than the SettlingTime. Time is relative to
the StepTime.

 sdo.requirements.StepResponseEnvelope class

2-103

Use set to set this and the StepTime and SettlingTime properties simultaneously.

Default: 5

SettlingTime

Time taken, in seconds, for the signal to settle within a specified range around the final
value. This settling range is defined as the final value plus or minus the percentage of
the final value, specified in PercentSettling.

Must be a finite positive real scalar, greater than RiseTime. Time is relative to the
StepTime.

Use set to set this and the RiseTime properties simultaneously.

Default: 7

StepTime

Time, in seconds, when the step response starts.

Must be a finite real nonnegative scalar, less than the RiseTime property.

Use set to set this and the RiseTime properties simultaneously.

Default: 0

TimeUnits

Time units of the requirement. Must be one of the following strings:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

2 Class Reference

2-104

• 'years'

Default: 'second'

Type

Step response bound type.

This property is read-only and set to '<='.

Methods

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Construct a step response bound object and specify percent overshoot.

 r = sdo.requirements.StepResponseEnvelope;

 r.PercentOvershoot = 20;

Alternatively, you can specify the percent overshoot during construction:

 r = sdo.requirements.StepResponseEnvelope('PercentOvershoot',20);

Alternatives

Use getbounds to get the bounds specified in a Check Step Response Characteristics
block.

See Also
copy | get | set

 sdo.requirements.StepResponseEnvelope class

2-105

How To
• Class Attributes
• Property Attributes

2 Class Reference

2-106

sdo.SampledParameter class

Package: sdo
Superclasses: param.Continuous

Sampled parameter

Syntax

p = sdo.SampledParameter(paramname)

p = sdo.SampledParameter(paramname,paramvalue)

p = sdo.SampledParameter(paramname,paramvalue,samplevalues)

Description

A sampled parameter is a numeric parameter with a nominal value and set of sample
values. The parameter can be scalar- or matrix-valued.

Typically, you use sampled parameters to create parametric models and evaluate model
variations for robustness testing.

Construction

p = sdo.SampledParameter(paramname) constructs a sdo.SampledParameter
object for a parameter and assigns the specified name to the Name property and default
values to the remaining properties.

p = sdo.SampledParameter(paramname,paramvalue) assigns the specified
parameter value to the Value property.

p = sdo.SampledParameter(paramname,paramvalue,samplevalues) assigns the
specified sample values to the SampleValues property.

 sdo.SampledParameter class

2-107

Input Arguments

paramname

Parameter name, specified as a string inside single quotes (' ').

paramvalue

Scalar or matrix parameter value.

samplevalues

Scalar, matrix or cell array of parameter sample values.

Properties

Free

Flag specifying whether the parameter is tunable or not.

Set the Free property to true (1) for tunable parameters and false (0) for
parameters you do not want to tune (fixed).

The dimension of this property must match the dimension of the Value property.

For matrix-valued parameters, you can:

• Fix individual matrix elements. For example p.Free = [true false; false
true] or p.Free([2 3]) = false.

• Use scalar expansion to fix all matrix elements. For example p.Free = false.

Default: true (1)

Info

Structure array specifying parameter units and labels.

The structure has Label and Unit fields.

The array dimension must match the dimension of the Value property.

2 Class Reference

2-108

Use this property to store parameter units and labels that describe the parameter.
For example p.Info(1,1).Unit = 'N/m'; or p.Info(1,1).Label = 'spring
constant'.

Default: '' for both Label and Unit fields

Maximum

Upper bound for the parameter value.

The dimension of this property must match the dimension of the Value property.

For matrix-valued parameters, you can:

• Specify upper bounds on individual matrix elements. For example p.Maximum([1
4]) = 5.

• Use scalar expansion to set the upper bound for all matrix elements. For example
p.Maximum = 5.

Default: Inf

Minimum

Lower bound for the parameter value.

The dimension of this property must match the dimension of the Value property.

For matrix-valued parameters, you can:

• Specify lower bounds on individual matrix elements. For example p.Minimum([1
4]) = -5.

• Use scalar expansion to set the lower bound for all matrix elements. For example
p.Minimum = -5.

Default: –Inf

Name

Parameter name.

This property is read-only and is set at object construction.

Default: ''

 sdo.SampledParameter class

2-109

SampleValues

Set of sample values for the parameter.

Must be a cell array of values. The elements of the cell array must have the same
dimension as the Value property. If the Value property is a scalar, this property can be
a vector.

Default: [-1 1]

Scale

Scaling factor used to normalize the parameter value.

The dimension of this property must match the dimension of the Value property.

For matrix-valued parameters, you can:

• Specify scaling for individual matrix elements. For example p.Scale([1 4]) = 1.
• Use scalar expansion to set the scaling for all matrix elements. For example p.Scale

= 1.

Default: 1

Value

Scalar or matrix value of a parameter.

The dimension of this property is set at object construction.

Default: 0

Methods

Inherited Methods

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

2 Class Reference

2-110

Examples

Specify sample values during construction.

 p = sdo.SampledParameter('K',eye(2),{0.9*eye(2) 1.1*eye(2)});

Construct a sampled parameter object and set its sample values.

 p = sdo.SampledParameter('K',eye(2));

 p.SampleValues = {0.9*eye(2) 1.1*eye(2)};

Alternatives

“Optimize Parameters for Robustness (GUI)”

See Also
param.Continuous | sdo.optimize

How To
• “Optimizing Parameters for Robustness”
• Class Attributes
• Property Attributes

 sdo.SampleOptions class

2-111

sdo.SampleOptions class
Package: sdo

Parameter sampling options for sdo.sample

Description

Specify method options to generate parameter samples, using sdo.sample, for
sensitivity analysis.

Construction

opt = sdo.SampleOptions creates an sdo.SampleOptions object and assigns
default values to its properties.

Use dot notation to modify the property values. For example:

opt = sdo.SampleOptions;

opt.Method = 'lhs';

Properties

Method

Sampling method, specified as one of the following strings:

• 'random' — Random samples drawn from the probability distributions specified for
the parameters.

Suppose you specified a value for the RankCorrelation property of the
sdo.ParameterSpace object that you use for sampling. The software uses the Iman-
Conover method to impose the parameter correlations.

• 'lhs' — Latin hypercube samples drawn from the probability distributions specified
for the parameters. Use this option for a more systematic space-filling approach than
random sampling.

2 Class Reference

2-112

Suppose you specified a value for the RankCorrelation property of the
sdo.ParameterSpace object that you use for sampling. The software uses the Iman-
Conover method to impose the parameter correlations.

Requires a Statistics and Machine Learning Toolbox license.
• 'copula' — Random samples drawn from a copula. Use this option to impose

correlations between the parameters. When you use this option, you must specify the
value of the RankCorrelation property of the sdo.ParameterSpace object that
you use for sampling.

Requires a Statistics and Machine Learning Toolbox license.

For more information about the sampling methods, see “Sampling Parameters for
Sensitivity Analysis”.

Default: 'random'

MethodOptions

Sample method options, applicable only when Method is 'copula', specified as a
structure with the following fields:

• Family — Copula family, specified as one of the following strings:

• 'Gaussian' — Gaussian copula
• 't' — t copula

Default: 'Gaussian'
• Type — Rank correlation type, specified as one of the following strings

• 'Spearman' — Spearman’s rank correlation
• 'Kendall' — Kendall’s rank correlation

Default: 'Spearman'
• DOF — Degrees of freedom of t copula, specified as a positive integer.

For a Gaussian copula, specify DOF as []. Specification of DOF is required for a t
copula.

Default: []

 sdo.SampleOptions class

2-113

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Specify Random Sampling Method

opt = sdo.SampleOptions

opt =

 SampleOptions with properties:

 Method: 'random'

 MethodOptions: [0x0 struct]

Specify Latin Hypercube Sampling Method

opt = sdo.SampleOptions;

sdo.Method = 'lhs';

Specify Copula-Based Sampling Method

opt = sdo.SampleOptions

opt.Method = 'copula'

opt.MethodOptions.Family = 't'

opt.MethodOptions.DOF = 2

See Also
sdo.sample

More About
• Class Attributes
• Property Attributes
• “Sampling Parameters for Sensitivity Analysis”

2 Class Reference

2-114

sdo.SimulationTest class
Package: sdo

Simulation scenario description

Syntax

sim_obj = sdo.SimulationTest(modelname)

Description

Create a scenario to simulate a Simulink model. A simulation scenario specifies input
signals, model parameter and initial state values, and signals to log for a model. Use a
simulation scenario to simulate a model with alternative inputs and model parameter
and initial state values, without modifying the model.

Construction

sim_obj = sdo.SimulationTest(modelname) constructs an sdo.SimulationTest
object and assigns the specified model name to the ModelName property and default
values to the remaining properties.

You can also construct an sdo.SimulationTest object using the
sdo.Experiment.createSimulator method of an sdo.Experiment object. The
createSimulator method configures the properties of the sdo.SimulationTest
object to simulate the model associated with the experiment.

Input Arguments

modelname

Simulink model name, specified as a string inside single quotes (' ').

The model must be on the MATLAB path.

 sdo.SimulationTest class

2-115

Properties

InitialState

Model initial state for simulation.

This property can be any initial state format that sim command supports.

Inputs

Input signals.

Specify signals to apply to root level input ports when simulating the model. The signal
can be any input signal format that the sim command supports.

Default: []

LoggedData

Data logged during simulation.

You must also specify the signals to log in the LoggingInfo property. The logged data is
stored in a Simulink.SimulationOutput object and is populated by the sim method.

This property is read-only.

Default: []

LoggingInfo

Signals to log when simulating a model.

This property is a Simulink.SimulationData.ModelLoggingInfo object. Specify the
signals to log in its Signals property.

Default: 1x1 Simulink.SimulationData.ModelLoggingInfo object

ModelName

Simulink model name associated with the simulation scenario. The model must be on the
MATLAB path.

Name

Name of the scenario

2 Class Reference

2-116

Default: ''

Parameters

Parameter values.

The software changes the model parameters to the specified values before simulating the
model and restores them to their original value after the simulation completes.

This property must be a param.Continuous object.

Default: []

Methods

Copy Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the
MATLAB documentation.

Examples

Create Simulation Scenario for Model

Create a simulation scenario for a model.

Pressures = Simulink.SimulationData.SignalLoggingInfo;

Pressures.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';

Pressures.OutputPortIndex = 1;

simulator = sdo.SimulationTest('sdoHydraulicCylinder');

Specify model signals to log.

simulator.LoggingInfo.Signals = [Pressures];

Create Simulation Scenario for Experiment

Specify an experiment for a model.

 sdo.SimulationTest class

2-117

experiment = sdo.Experiment('sdoRCCircuit');

Create a simulation scenario for the experiment.

sim_obj = createSimulator(experiment);

• “Design Optimization to Meet Step Response Requirements (Code)”
• “Design Optimization to Meet a Custom Objective (Code)”
• “Estimate Model Parameter Values (Code)”
• “Estimate Model Parameters and Initial States (Code)”

Alternatives

“Design Optimization to Meet Step Response Requirements (GUI)”

See Also
sdo.optimize | sdo.Experiment.createSimulator | sdo.Experiment

How To
• Class Attributes
• Property Attributes

3

Alphabetical List

3 Alphabetical List

3-2

copy
Copy requirement

Syntax

copy_req = copy(req)

Description

copy_req = copy(req) copies a requirement object
(sdo.requirements.StepResponseEnvelope, ...) to a new object of the same type.

For more information, see copy in the MATLAB documentation.

Input Arguments

req

requirement object (sdo.requirements.StepResponseEnvelope, ...)

Output Arguments

copy_req

requirement object (sdo.requirements.StepResponseEnvelope, ...), which is a copy
of req.

See Also
get | handle

 evalRequirement

3-3

evalRequirement
Class: sdo.requirements.BodeMagnitude
Package: sdo.requirements

Evaluate Bode magnitude bound for linear system

Syntax

c = evalRequirement(req,lin_sys)

Description

c = evalRequirement(req,lin_sys) evaluate whether a linear system satisfies the
specified piecewise-linear Bode magnitude bound.

Input Arguments

req

sdo.requirements.BodeMagnitude object.

For MIMO systems, the bound applies to each input/output (I/O) channel.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments

c

Column vector indicating the maximum signed distance of the system gain to each edge
specified in req. Negative values indicate that the bound edge is satisfied and positive
values that the bound edge is violated.

3 Alphabetical List

3-4

For MIMO systems, a matrix of signed distances where each column represents an I/O
pair and gives the distance of that IO pair gain to each edge in the bounds.

Examples

Evaluate Bode magnitude requirement.

 req = sdo.requirements.BodeMagnitude;

 sys = tf(1,[1 2 2 1])

 c = evalRequirement(req,sys);

c is negative, which indicates that the system satisfies the gain requirement.

See Also
sdo.requirements.BodeMagnitude | get | set | copy

 evalRequirement

3-5

evalRequirement

Evaluate peak gain bound for linear system

Syntax

c = evalRequirement(req,lin_sys)

Description

c = evalRequirement(req,lin_sys) evaluates whether a linear system satisfies
the specified peak gain (infinity norm of the system) bound. The closed loop is computed
using the feedback sign specified in the FeedbackSign property of req.

Input Arguments

req

sdo.requirements.ClosedLoopPeakGain object.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments

c

• Signed distance of the closed-loop peak gain to the bound if the Type property of req is
<= or ==. When <=, negative values indicate that the bound is satisfied while positive
values indicate the bound is violated. When ==, any value other than 0 indicate that
the bound is violated.

• Peak gain if the Type property of req is min.

3 Alphabetical List

3-6

Examples

Evaluate peak gain requirement.

 req = sdo.requirements.ClosedLoopPeakGain;

 sys = tf(0.5,[1 3 3 1]);

 c = evalRequirement(req,sys);

c is negative, which indicates that the system satisfies the gain requirement.

See Also
sdo.requirements.ClosedLoopPeakGain | get | set | copy

 evalRequirement

3-7

evalRequirement
Class: sdo.requirements.GainPhaseMargin
Package: sdo.requirements

Evaluate gain and phase margin bounds for linear system

Syntax

c = evalRequirement(req,lin_sys)

Description

c = evalRequirement(req,lin_sys) evaluates whether a linear system satisfies
the specified gain and phase margin bounds. The gain and phase margins are computed
using the feedback sign specified in the FeedbackSign property of req.

Input Arguments

req

sdo.requirements.GainPhaseMargin object.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments

c

• Signed distance of the computed gain and phase margins to the bound if the Type
property of req is >= or ==.

Signed distance to the gain margin bound appear before the signed distance to the
phase margin bound. Negative values indicate that the bound is satisfied while

3 Alphabetical List

3-8

positive values indicate the bound is violated. Unstable loops return positive values.
When ==, any number other than 0 indicates that the bound is not satisfied.

• Negative of the gain and phase margins such that minimizing the values maximizes
the margins if the Type property of req is 'max. Unstable loops return positive values.

Examples

Evaluate gain and phase margin requirements.

 req = sdo.requirements.GainPhaseMargin;

 sys = tf(0.5,[1 3 3 1]);

 c = evalRequirement(req,sys);

c is negative, which indicates that the system satisfies the gain and phase margin
requirement.

See Also
| get | set | copy

 evalRequirement

3-9

evalRequirement

Class: sdo.requirements.OpenLoopGainPhase
Package: sdo.requirements

Evaluate gain and phase bounds on Nichols response of linear system

Syntax

c = evalRequirement(req,lin_sys)

Description

c = evalRequirement(req,lin_sys) evaluates whether a linear system satisfies the
specified open-loop gain and phase bounds on the Nichols response.

Input Arguments

req

sdo.requirements.OpenLoopGainPhase object.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments

c

Vector of maximum signed distances of the response to each piecewise linear edge.
Negative values indicate that the bound edge is satisfied and positive values indicate the
bound is violated.

3 Alphabetical List

3-10

Examples

Evaluate open-loop gain and phase requirements.

req = sdo.requirements.OpenLoopGainPhase;

sys = tf(0.5,[1 3 3 1]);

c = evalRequirement(req,sys);

See Also
sdo.requirements.OpenLoopGainPhase | get | set | copy

 evalRequirement

3-11

evalRequirement
Class: sdo.requirements.PZDampingRatio
Package: sdo.requirements

Evaluate damping ratio bound on linear system

Syntax

c = evalRequirement(req,lin_sys)

Description

c = evalRequirement(req,lin_sys) evaluates whether the poles of a linear system
satisfies the specified damping ratio bound.

Input Arguments

req

sdo.requirements.PZDampingRatio object.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments

c

• Signed distance of the damping ratio of each pole of the linear system to the bound,
if the Type property of req is >=, <= or ==. Negative values indicate that the bound is
satisfied while positive values indicate that the bound is violated. When ==, any value
other than 0 indicates that the bound is violated.

• Negative of the damping ratio such that minimizing the values maximizes the
damping ratio, if the Type property of req is 'max'.

3 Alphabetical List

3-12

Examples

Evaluate damping ratio requirement.

 req = sdo.requirements.PZDampingRatio;

 sys = tf(0.5,[1 3 3 1]);

 c = evalRequirement(req,sys);

c is negative, which indicates that the system satisfies the damping ratio requirement.

See Also
| get | set | copy

 evalRequirement

3-13

evalRequirement
Class: sdo.requirements.PZNaturalFrequency
Package: sdo.requirements

Evaluate natural frequency bound on linear system

Syntax

c = evalRequirement(req,lin_sys)

Description

c = evalRequirement(req,lin_sys) evaluates whether the poles of a linear system
satisfies the specified natural frequency bound.

Input Arguments

req

Requirement object (sdo.requirements.StepResponseEnvelope, ...).

For MIMO systems, the bound applies to each input/output (I/O) channel.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments

c

• Signed distance of the natural frequency of each system pole to the bound. If the
Type property of req is >=, <=, negative values indicate that the bound is satisfied
while positive values indicate that the bound is violated. If ==, any value other than 0
indicates that the bound is violated.

3 Alphabetical List

3-14

• Negative of the natural frequency of the linear system poles such that minimizing the
values maximizes the natural frequency, if the Type property of req is 'max'.

Examples

Evaluate natural frequency requirement.

req = sdo.requirements.PZNaturalFrequency;

sys = tf(0.5,[1 3 3 1]);

c = evalRequirement(req,sys);

c is positive, which indicates that the system does not satisfy the natural frequency
requirement.

See Also
sdo.requirements.PZNaturalFrequency | get | set | copy

 evalRequirement

3-15

evalRequirement
Class: sdo.requirements.PZSettlingTime
Package: sdo.requirements

Evaluate settling time bound on linear system

Syntax

c = evalRequirement(req,lin_sys)

Description

c = evalRequirement(req,lin_sys) evaluates whether the poles of a linear system
satisfies the specified settling time bound.

Input Arguments

req

sdo.requirements.PZSettlingTime object.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments

c

• Signed distance of the real component of each system pole to the bound, if the Type
property of req is <= or ==. Negative values indicate that the bound is satisfied while
positive values indicate that the bound is violated. If ==, values other than 0 indicate
that the bound is violated.

• Pole locations such that minimizing the values minimizes the settling time, if the
Type property of req is 'min'.

3 Alphabetical List

3-16

Examples

Evaluate settling time requirement.

 req = sdo.requirements.PZSettlingTime;

 sys = tf(0.5,[1 3 3 1]);

 c = evalRequirement(req,sys);

c is positive, which indicates that the system does not satisfy the settling time
requirement.

See Also
| get | set | copy

 evalRequirement

3-17

evalRequirement
Class: sdo.requirements.SignalBound
Package: sdo.requirements

Evaluate piecewise-linear bound

Syntax

c = evalRequirement(req,sig)

Description

c = evalRequirement(req,sig) evaluate whether a signal satisfies the specified
piecewise-linear bounds.

Input Arguments

req

sdo.requirements.SignalBound object.

sig

MATLAB timeseries object or nxm array, where the 1st column is time and subsequent
columns are signal values.

Output Arguments

c

Column vector indicating the maximum signed distance of the signal to each edge.
Negative values indicate that the bound edge is satisfied and positive values indicate
that the bound edge is violated.

Matrix if multi-channeled signal.

3 Alphabetical List

3-18

Examples

Evaluate piecewise-linear bound on signal.

 req = sdo.requirements.SignalBound;

 sig = timeseries(1-exp(-(0:10)'));

 c = evalRequirement(req,sig);

c is negative, which indicates that the signal satisfies the bounds.

See Also
get | set | copy

 evalRequirement

3-19

evalRequirement
Class: sdo.requirements.SignalTracking
Package: sdo.requirements

Evaluate tracking requirement

Syntax

c = evalRequirement(req,sig)

c = evalRequirement(req,sig,ref)

Description

c = evalRequirement(req,sig) evaluates whether a test point signal, sig, tracks the
reference signal specified by a requirement object, req.

c = evalRequirement(req,sig,ref) evaluates whether sig tracks the reference
signal specified by ref. req specifies the error computation options. Estimating
parameters for multiple experiments requires you to repeatedly compare test point
and reference signal sets. Use this syntax if you use the same evaluation criteria for all
comparisons. You vary sig and ref, and re-use the requirement object, req.

Input Arguments

req

sdo.requirements.SignalTracking object.

sig

MATLAB timeseries object or nxm array, where the 1st column is time and subsequent
columns are signal values.

ref

Reference signal, specified as a MATLAB timeseries object.

3 Alphabetical List

3-20

Output Arguments

c

• Measure of how well the test point signal matches the reference signal, if the Type
property of req is '=='. Specify the algorithm used to compute the tracking measure
through the Method property.

• Signed distance of the test point signal to the reference signal, if the Type property
of req is '>=' or '<='. Negative values indicate the bound is satisfied while positive
values indicate that the bound is violated.

The command compares the reference and test point signals only at time points that are
in the range of both signals. Time points outside this range are ignored. The software
uses the interpolation method specified by ref.InterpolationTimes to compare the
data in the valid time range.

Examples

Evaluate Signal Tracking Requirement

Create the reference data.

time = (0:0.1:10)';

data = 1-exp(-time);

Create the signal tracking requirement object. Specify the reference signal.

req = sdo.requirements.SignalTracking;

req.ReferenceSignal = timeseries(data,time);

Obtain the test point signal.

sig = timeseries(1-exp(-time/2),time);

Evaluate the signal tracking requirement.

c = evalRequirement(req,sig);

Evaluate Tracking Using Requirement Object to Specify Error Computation Method

When you estimate parameters for multiple experiments, you repeatedly compare
test point and reference signal sets. If you use the same evaluation criteria for all

 evalRequirement

3-21

comparisons, you can use the c = evalrequirement(req,sig,ref) syntax. You vary
sig and ref, and re-use the requirement object, req. req specifies the estimation error
computation options.

For this example, create a reference and test point signal. Then, use a requirement object
to evaluate the requirement.

Create the reference signal.

time = (0:0.1:10)';

data = 1-exp(-time);

ref = timeseries(data,time);

Create the signal tracking requirement object. Specify the error computation method.

For this example, specify 'Residuals' as the algorithm for error computation.

req = sdo.requirements.SignalTracking;

req.Method = 'Residuals';

Obtain the test point signal.

sig = timeseries(1-exp(-time/2),time);

Evaluate the signal tracking requirement.

c = evalRequirement(req,sig,ref);

See Also
get | set | copy

3 Alphabetical List

3-22

evalRequirement
Class: sdo.requirements.SingularValue
Package: sdo.requirements

Evaluate singular value bound on linear system

Syntax

c = evalRequirement(req,lin_sys)

Description

c = evalRequirement(req,lin_sys) evaluates whether a linear system satisfies the
specified singular values bound.

Input Arguments

req

sdo.requirements.SingularValue object.

For MIMO systems, the bound applies to each input/output (I/O) channel.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments

c

Column vector indicating the maximum signed distance of the system gain to each edge
specified in req. Negative values indicate that the bound edge is satisfied and positive
values indicate that the bound edge is violated.

 evalRequirement

3-23

For MIMO systems, a matrix of signed distances where each column represents an I/O
pair and gives the distance of that IO pair gain to each edge in the bounds.

Examples

Evaluate singular value requirement.

 req = sdo.requirements.SingularValue;

 sys = tf(1,[1 2 2 1]);

 c = evalRequirement(req,sys);

c is negative, which indicates that the system satisfies the gain requirement.

See Also
sdo.requirements.SingularValue | get | set | copy

3 Alphabetical List

3-24

evalRequirement
Class: sdo.requirements.StepResponseEnvelope
Package: sdo.requirements

Evaluate step response bound

Syntax

c = evalRequirement(req,sig)

Description

c = evalRequirement(req,sig) evaluate whether a signal satisfies specified step
response bounds.

Input Arguments

req

sdo.requirements.StepResponseEnvelope object.

sig

MATLAB timeseries object or nxm array, where the 1st column is time and subsequent
columns are signal values.

Numeric or generalized linear time invariant (LTI) model, if you have Simulink Control
Design software.

Output Arguments

c

Column vector indicating the maximum signed distance of the signal to each edge in the
step response envelope.

 evalRequirement

3-25

Signed distances to upper bound edges appear before signed distances to lower bounds
edges. Negative values indicate that the bound edge is satisfied and positive values
indicate that the bound edge is violated.

Examples

Evaluate step response bounds on signal.

 req = sdo.requirements.StepResponseEnvelope;

 sig = timeseries(1-exp(-(0:10)'));

 c = evalRequirement(req,sig);

See Also
get | set | copy

3 Alphabetical List

3-26

get
Get property values

Syntax

get(req)

get(req,PropertyName)

Description

get(req) returns the value of all properties of the requirement object
(sdo.requirements.StepResponseEnvelope, ...).

get(req,PropertyName) returns value of a specific property. Use a cell array of
property names to return a cell array with multiple property values.

Input Arguments

req

Requirement object (sdo.requirements.StepResponseEnvelope, ...).

PropertyName

Name of the requirement object (sdo.requirements.StepResponseEnvelope, ...)
property.

Alternatives

“Getting Property Values”

 set

3-27

set
Set property values

Syntax
set(req,Name,Value,)

Description
set(req,Name,Value,) sets the property value of a requirement object
(sdo.requirements.StepResponseEnvelope, ...). Specify the property name and
value using one or more Name,Value pair arguments.

Input Arguments

req

Requirement object (sdo.requirements.StepResponseEnvelope, ...)

Name,Value

Property name of a requirement object
(sdo.requirements.StepResponseEnvelope, ...), and the corresponding value to set.

Examples
Specify property values.

r = sdo.requirements.SignalBound;

set(r,'BoundTimes',[0 5;5 10], ...

 'BoundMagnitudes',[1.1 1.1; 1.01 1.01]);

Alternatives
“Setting Property Values”

3 Alphabetical List

3-28

More About

Tips

• Use set to simultaneously change properties that you cannot change independently.

 getbounds

3-29

getbounds
Get bounds specified in Check block

Syntax

bnds = getbounds(blockpath)

Description

bnds = getbounds(blockpath) returns the bounds specified in the Check block
specified by blockpath.

Input Arguments

blockpath

Check block to get bounds from, specified as a full block path inside single quotes (' '). A
block path is of the form model/subsystem/block that uniquely identifies a block in the
model. The Simulink model must be open.

Output Arguments

bnds

Cell array. The number of elements and objects they contain depends on the Check block
type.

• Check Step Response Characteristics: Cell array of one element that contains a
sdo.requirements.StepResponseEnvelope object.

• Check Custom Bounds: Cell array of two elements — the first and second elements
contain the following upper and lower bound values, respectively. Both elements are
sdo.requirements.SignalBound objects.

• Check Against Reference: Cell array of one element that contains a
sdo.requirements.SignalTracking object.

3 Alphabetical List

3-30

Note: Programmatically changing the bound values in the object returned does not
update them in the Block Parameters dialog box.

Examples

Get Bounds from Check Block

Retrieve bounds from a Check Step Response Characteristics block.

load_system('sldo_model1_stepblk');

allBlkReq = getbounds('sldo_model1_stepblk/Step Response');

Type allBlkReq{1} to view the cell array element.

allBlkReq{1}

ans =

 StepResponseEnvelope with properties:

 InitialValue: 0

 FinalValue: 1

 StepTime: 0

 RiseTime: 5

 PercentRise: 80

 SettlingTime: 7

 PercentSettling: 1.0000

 PercentOvershoot: 10.0000

 PercentUndershoot: 1

 Type: '<='

 Name: ''

 Description: ''

 TimeUnits: 'seconds'

• “Design Optimization to Meet Step Response Requirements (Code)”

See Also
sdo.optimize | Check Step Response Characteristics | Check Against Reference |
Check Custom Bounds

 getOvershoot

3-31

getOvershoot
Class: sdo.requirements.PZDampingRatio
Package: sdo.requirements

Convert damping ratio to equivalent overshoot value

Syntax

overshoot = getOvershoot(req)

Description

overshoot = getOvershoot(req) converts the damping ratio value specified in
the DampingRatio property of an sdo.requirements.PZDampingRatio object to an
equivalent approximate second-order overshoot value.

Input Arguments

req

sdo.requirements.PZDampingRatio object.

Output Arguments

overshoot

Approximate second-order percent overshoot value, equivalent to the damping ratio value
in DampingRatio property of sdo.requirements.PZDampingRatio.

Examples

Convert damping ratio to approximate second-order overshoot value.

3 Alphabetical List

3-32

r = sdo.requirements.PZDampingRatio;

r.DampingRatio = 0.1;

overshoot = getOvershoot(r);

See Also
sdo.requirements.PZDampingRatio | setOvershoot | evalRequirement

 setOvershoot

3-33

setOvershoot
Class: sdo.requirements.PZDampingRatio
Package: sdo.requirements

Set overshoot to an equivalent damping ratio

Syntax
req1 = setOvershoot(req,percent_overshoot)

Description
req1 = setOvershoot(req,percent_overshoot) sets the damping ratio value to a
value equivalent to percent overshoot.

Input Arguments

req

sdo.requirements.PZDampingRatio object.

percent_overshoot

Percent overshoot value to compute damping ratio.

Output Arguments

req1

sdo.requirements.PZDampingRatio object whose DampingRatio property is the
damping ratio value equivalent to percent_overshoot.

Examples
Specify overshoot bound.

3 Alphabetical List

3-34

 req = sdo.requirements.PZDampingRatio

 setOvershoot(req,20)

See Also
sdo.requirements.PZDampingRatio | getOvershoot | evalRequirement

 makedist

3-35

makedist

Create probability distribution object

Syntax

pd = makedist(distname)

pd = makedist(distname,Name,Value)

Description

pd = makedist(distname) creates a probability distribution object for the distribution
distname, using the default parameter values.

Use makedist to specify normal or uniform distribution objects. If you have a Statistics
and Machine Learning Toolbox license, you can use makedist to create objects for other
distributions, such as the Gamma or Weibull distributions. For more information, see
makedist in the Statistics and Machine Learning Toolbox documentation.

pd = makedist(distname,Name,Value) creates a probability distribution object with
one or more distribution parameter values specified by name-value pair arguments.

Examples

Create a Normal Distribution Object

Create a normal distribution object using the default parameter values.

pd = makedist('Normal')

pd =

 NormalDistribution

 Normal distribution

 mu = 0

3 Alphabetical List

3-36

 sigma = 1

Specify Parameters for a Normal Distribution Object

Create a normal distribution object with a mean value of mu = 75, and a standard
deviation of sigma = 10.

pd = makedist('Normal','mu',75,'sigma',10)

pd =

 NormalDistribution

 Normal distribution

 mu = 75

 sigma = 10

Input Arguments

distname — Distribution name
string

Distribution name, specified as one of the following strings. The distribution specified by
distname determines the class type of the returned probability distribution object.

Distribution Name Description Distribution Class

'Normal' Normal distribution prob.NormalDistribution

'Uniform' Uniform distribution prob.UniformDistribution

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: makedist('Normal','mu',10) specifies a normal distribution with
parameter mu equal to 10, and parameter sigma equal to the default value of 1.

Normal Distribution

 makedist

3-37

'mu' — Mean
0 (default) | scalar value

Example: 'mu',2

Data Types: single | double

'sigma' — Standard deviation
1 (default) | nonnegative scalar value

Example: 'sigma',2

Data Types: single | double

Uniform Distribution

'lower' — Lower parameter
0 (default) | scalar value

Example: 'lower',-4

Data Types: single | double

'upper' — Upper parameter
1 (default) | scalar value greater than lower

Example: 'upper',2

Data Types: single | double

Output Arguments

pd — Probability distribution
probability distribution object

Probability distribution, returned as a probability distribution object of the type specified
by distname.

See Also
sdo.ParameterSpace

3 Alphabetical List

3-38

sdo.analyze
Analyze how model parameters influence cost function

Syntax

r = sdo.analyze(x,y)

r = sdo.analyze(x,y,opts)

Description

r = sdo.analyze(x,y) returns an Np-by-Nc table containing the pairwise linear
correlation coefficients between each pair of columns in the x and y tables. x contains
Ns samples of Np model parameters. y contains Ns rows, each row corresponds to the
cost function evaluation for a sample in x. Each column in y corresponds to a cost or
constraint.

r = sdo.analyze(x,y,opts) specifies the analysis method(s) and method options
using opts, an sdo.AnalyzeOptions object. If you specify multiple analysis methods, r
is returned as a structure with fields for the results of each specified analysis method and
method option combination.

Examples

Analyze Influence of Model Parameters on Cost Function

Create arbitrary param.Continuous objects.

p1 = param.Continuous('x1',1);

p2 = param.Continuous('x2',1500);

p = [p1;p2];

Specify the parameter space definition for the parameters.

ps = sdo.ParameterSpace(p);

Sample the parameters.

 sdo.analyze

3-39

x = sdo.sample(ps,50);

Evaluate the cost function for the samples.

y = sdo.evaluate(@(p) sdoExampleCostFunction(p),ps,x);

Obtain the pairwise linear correlation coefficients for the parameters and the cost
function.

r = sdo.analyze(x,y);

Specify Analysis Options

Create arbitrary param.Continuous objects.

p1 = param.Continuous('x1',1);

p2 = param.Continuous('x2',1500);

p = [p1;p2];

Specify the parameter space definition for the parameters.

ps = sdo.ParameterSpace(p);

Sample the parameters.

x = sdo.sample(ps,50);

Evaluate the cost function for the samples.

y = sdo.evaluate(@(p) sdoExampleCostFunction(p),ps,x);

Create an options object to use all available analysis methods.

opt = sdo.AnalyzeOptions;

opt.Method = 'All';

Obtain the pairwise linear correlation coefficients for the parameters and the cost
function.

r = sdo.analyze(x,y,opt);

r is a structure with table fields, with one table for each type of analysis specified by opt.

• “Identify Key Parameters for Estimation (Code)”

3 Alphabetical List

3-40

Input Arguments

x — Model parameter samples
table

Model parameter samples, specified as an Ns-by-Np table.

Ns is the number of samples, and Np is the number of model parameters.

Generally, you use sdo.sample to generate x.

y — Cost function evaluations
table

Cost function and constraint evaluations for each sample in x, specified as an Ns-by-Nc
table.

Ns is the number of samples, and Nc is the number of cost and constraints returned by
the cost function.

Generally, you use sdo.evaluate to generate y.

opts — Analysis options
sdo.AnalyzeOptions object

Analysis options, specified as an sdo.AnalyzeOptions object.

Output Arguments

r — Analysis results
table | structure

Analysis results, returned as a table (when you specify a single analysis method) or a
structure with table fields (when you specify multiple analysis methods).

Each table returned by r is an Np-by-Nc table. Np is the number of parameters, and Nc is
the number of cost and constraints returned by the cost function.

More About
• “Sensitivity Analysis Methods”

 sdo.analyze

3-41

See Also
sdo.AnalyzeOptions | sdo.evaluate

3 Alphabetical List

3-42

sdo.evaluate
Evaluate cost function for samples

Syntax
[y,info] = sdo.evaluate(fcn,params)

[y,info] = sdo.evaluate(fcn,params,param_samples)

[y,info] = sdo.evaluate(___ ,opts)

Description
[y,info] = sdo.evaluate(fcn,params) evaluates the cost function, fcn, for
samples of the parameter space specified by params (sdo.ParameterSpace object). The
software generates a table of samples with 2Np+1 rows and Np columns. These samples
are generated per the distributions specified by the ParameterDistributions,
RankCorrelation, and Options properties of params. The software evaluates the cost
function for each row of the samples table. y is a table with one column for each cost
or constraint output returned by fcn and 2Np+1 rows. Np is the number of parameters
specified in params.

[y,info] = sdo.evaluate(fcn,params,param_samples) evaluates the
cost function for the specified parameter samples table, param_samples. For this
syntax, you can specify params as an sdo.ParameterSpace object or a vector of
param.Continuous objects.

y is a table with one column for each cost or constraint output returned by fcn. y contains
as many rows as param_samples.

[y,info] = sdo.evaluate(___ ,opts) specifies evaluation options that configure
the evaluation error handling, display, and parallel computing options. This syntax can
include any of the input argument combinations in the previous syntaxes.

Examples
Evaluate Cost Function Value for Parameter Samples

Create an arbitrary param.Continuous object.

 sdo.evaluate

3-43

p = param.Continuous('x',1);

Specify the parameter space definition for the model parameter.

ps = sdo.ParameterSpace(p);

Evaluate the cost function.

[y,info] = sdo.evaluate(@(p) sdoExampleCostFunction(p),ps);

The software generates 3 (2Np+1, Np = 1 parameter) samples and evaluates the
sdoExampleCostFunction cost function for each sample.

• “Design Exploration using Parameter Sampling (Code)”
• “Identify Key Parameters for Estimation (Code)”

Input Arguments

fcn — Function to be minimized by sdo.optimize
function handle

Function to be minimized by sdo.optimize, specified as a function handle.

For information about this function, see the description of the opt_fcn input argument
in sdo.optimize. Also, see “Writing a Cost Function”.

params — Model parameters and states
sdo.ParameterSpace object | vector of param.Continuous objects

Model parameters and states, specified as an sdo.ParameterSpace object or a vector of
param.Continuous objects.

If you specify params as a vector of param.Continuous objects, you must also specify
param_samples.

param_samples — Parameter samples
table

Parameter samples, specified as a table.

param_samples contains columns that correspond to free scalar parameters and rows
that are samples of these parameters. Free scalar parameters refers to all the parameters

3 Alphabetical List

3-44

specified by params whose Free property is set to 1. Specifying this property value as 1
indicates that the software can vary the value of this parameter during optimization.

Each column name must be equal to the name of the corresponding scalar parameter.

opts — Evaluation options
sdo.EvaluateOptions object

Evaluation options, specified as an sdo.EvaluateOptions object.

Output Arguments

y — Cost function evaluation
table

Cost function and constraint evaluations, returned as a table.

y is a table with one column for each cost or constraint output returned by fcn, and Ns
rows.

If you specify param_samples, Ns is equal to the number of rows of param_samples.
Otherwise, Ns is equal to 2Np+1. Np is the number of parameters specified in params.

info — Evaluation information
structure

Evaluation information, returned as a structure with the following fields:

• Status — Evaluation status for each sample, returned as a cell array of strings.

Each entry of the cell array is one of the following strings:

• 'success' — Model evaluation was successful
• 'failure' — Model evaluation resulted all NaN results
• 'error' — Model evaluation resulted in an error

• Stats — Time to evaluate all samples, returned as a structure with the following
fields:

• StartTime — Evaluation start time, returned as a six-element date vector
containing the current date and time in decimal form: [year month day hour
minute seconds]

 sdo.evaluate

3-45

• EndTime — Evaluation end time, returned as a six-element date vector containing
the current date and time in decimal form: [year month day hour minute
seconds]

To determine the total evaluation time, use
etime(info.EndTime,info.StartTime).

See Also
sdo.ParameterSpace | sdo.analyze | sdo.EvaluateOptions | sdo.optimize |
sdo.sample

3 Alphabetical List

3-46

createSimulator
Class: sdo.Experiment
Package: sdo

Create simulation object from experiment to compare measured and simulated data

Syntax

sim_obj = createSimulator(experiment)

sim_obj = createSimulator(experiment,sim_obj0)

Description

sim_obj = createSimulator(experiment) creates a sdo.SimulationTest object
to simulate a model using the parameters and inputs specified in an experiment. You
compare the simulated and measured outputs. sim_obj specifies the model stop time as
the end time of the longest running experiment output signal.

sim_obj = createSimulator(experiment,sim_obj0) updates the values
of the Parameters, InitialStates, Input and LoggingInfo properties of
the sdo.SimulationTest object, sim_obj0. It does so using the corresponding
properties specified by experiment. sim_obj0.ModelName must be the same as
experiment.ModelName. You use this syntax to avoid creating a simulation scenario
object (sdo.SimulationTest object) repeatedly and, instead, modify an existing
simulation scenario object.

Input Arguments

experiment

Experiment, specified as an sdo.Experiment object.

sim_obj0

Simulation scenario, specified as an sdo.SimulationTest object.

 createSimulator

3-47

Typically, you use the createSimulator method of an experiment to create sim_obj0,
which returns an appropriately configured simulation scenario. You can construct
sim_obj0 using the syntax sim_obj0 = sdo.SimulationTest(modelname).
However, if you do so, then sim_obj0.ModelName must be the same as
experiment.ModelName.

Output Arguments

sim_obj

Simulation scenario, returned as an sdo.SimulationTest object.

The properties of sim_obj are configured to simulate the model associated with
experiment using the parameters, initial states and inputs defined by experiment.

When you use the syntax sim_obj = createSimulator(experiment,sim_obj0),
sim_obj is the same object as sim_obj0. However, it contains the Parameters,
InitialStates, and Input property values of experiment. The LoggingInfo property
of sim_obj is extended to include any additional signals from experiment.OutputData.

Examples

Create Simulation Scenario from Experiment

Specify an experiment.

experiment = sdo.Experiment('sdoRCCircuit');

Create a simulation scenario for the experiment.

sim_obj = createSimulator(experiment);

Update Simulation Scenario for Experiment

Specify an experiment and a model parameter value for the experiment.

load_system('sdoRCCircuit');

p = sdo.getParameterFromModel('sdoRCCircuit','C1');

p.Value = 1e-6;

p.Free = false;

3 Alphabetical List

3-48

experiment = sdo.Experiment('sdoRCCircuit');

experiment.Parameters = p;

Create a simulation scenario for the experiment.

sim_obj = createSimulator(experiment);

sim_obj.Parameters.Value

ans =

 1.0000e-06

Modify the model parameter value for the experiment.

experiment.Parameters.Value = 2e-6;

Update the simulation scenario.

sim_obj = createSimulator(experiment,sim_obj);

sim_obj.Parameters.Value

ans =

 2.0000e-06

The value of the model parameter associated with sim_obj is updated.

• “Estimate Model Parameter Values (Code)”
• “Estimate Model Parameters and Initial States (Code)”

See Also
sdo.SimulationTest

 getValuesToEstimate

3-49

getValuesToEstimate

Class: sdo.Experiment
Package: sdo

Get model initial states and parameters for estimation from experiment

Syntax

parameters = getValuesToEstimate(experiment)

Description

parameters = getValuesToEstimate(experiment) returns the model initial states
and parameters of an experiment that you want to estimate.

When you estimate parameters for multiple experiments, getValuesToEstimate tags
each parameter to track its corresponding experiment. To update the experiments with
their corresponding estimated parameter values, use setEstimatedValues.

Input Arguments

experiment

Experiment, specified as an sdo.Experiment object.

To get the model initial states and parameters for multiple experiments, use a vector of
sdo.Experiment objects.

To specify that you want to estimate the value of a model initial state or
parameter for an experiment, set its Free property to true. For example,
experiment.InitialStates(1).Free = true.

3 Alphabetical List

3-50

Output Arguments

parameters

Model initial states and parameters of an experiment that you want to estimate,
returned as a vector of param.Continuous objects.

When experiment specifies multiple experiments, getValuesToEstimate tags each
entry of parameters to track its corresponding experiment. To update the experiments
with their corresponding estimated parameter values, use setEstimatedValues.

Examples

Get Model Initial States and Parameters to Estimate from Experiment

Specify an experiment with a model initial state and parameter that you want to
estimate.

load_system('sdoRCCircuit');

experiment = sdo.Experiment('sdoRCCircuit');

experiment.InitialStates = sdo.getStateFromModel('sdoRCCircuit','C1');

experiment.Parameters = sdo.getParameterFromModel('sdoRCCircuit','C1');

Get the model initial states and parameters that you want to estimate from the
experiment.

val = getValuesToEstimate(experiment)

val(1,1) =

 Name: 'sdoRCCircuit/C1:sdoRCCircuit.C1.vc'

 Value: 0

 Minimum: -Inf

 Maximum: Inf

 Free: 1

 Scale: 1

 dxValue: 0

 dxFree: 1

 Info: [1x1 struct]

 getValuesToEstimate

3-51

val(2,1) =

 Name: 'C1'

 Value: 1.0000e-03

 Minimum: -Inf

 Maximum: Inf

 Free: 1

 Scale: 0.0020

 Info: [1x1 struct]

2x1 param.Continuous

val(1,1), the initial voltage of the model capacitor block, C1, is the initial state
specified by experiment for estimation. Execute class(val(1,1)) to see that
val(1,1) is a param.State object, respresenting a model initial state.

val(1,2), the capcitance of the C1 block, is the model parameter specified by
experiment for estimation.

• “Estimate Model Parameters using Multiple Experiments (Code)”
• “Estimate Model Parameters Per Experiment (Code)”

See Also
sdo.Experiment | setEstimatedValues

3 Alphabetical List

3-52

setEstimatedValues
Class: sdo.Experiment
Package: sdo

Update experiments with estimated model initial states and parameter values

Syntax

experiment = setEstimatedValue(experiment0,parameters)

Description

experiment = setEstimatedValue(experiment0,parameters) updates the
experiment with the estimated model initial states and parameter values.

setEstimatedValues is used with the getValuesToEstimate method. You
use getValuesToEstimate to obtain the parameters that you want to estimate
from an experiment. When you estimate parameters for multiple experiments,
getValuesToEstimate tags each parameter to track its corresponding experiment.
You use setEstimatedValues to update the experiments with their corresponding
estimated parameter values.

Input Arguments

experiment0

Experiment, specified as an sdo.Experiment object.

To specify multiple experiments, use a vector of sdo.Experiment objects.

parameters

Estimated model initial states and parameters for experiments, specified as a vector of
param.Continuous objects.

You obtain estimated parameters using sdo.optimize.

 setEstimatedValues

3-53

Output Arguments

experiment

Updated experiment, returned as an sdo.Experiment object.

If experiment0 is a vector of experiments, then experiment is a corresponding vector of
updated sdo.Experiment objects.

setEstimatedValues updates the values of the parameters and initial states specified
in each of the experiments in experiment0 using the corresponding entry in parameters.

Examples

Update Experiment with Estimated Parameter Value

Specify an experiment.

experiment = sdo.Experiment('sdoRCCircuit');

Typically, you also specify measured input/output data for the experiment.

Specify a model parameter for estimation.

load_system('sdoRCCircuit');

C1_parameter = sdo.getParameterFromModel('sdoRCCircuit','C1');

C1_parameter.Value = 460e-6;

experiment.Parameters = C1_parameter;

C1_parameter is the capacitance parameter of the C1 block. The initial guess for its
value is 460 F.

Estimate the parameter value.

Typically, you use sdo.optimize to get the estimated parameter values for an
experiment. For this example, directly change the value of the capacitance parameter.

C1_parameter.Value = 1e-6;

Update the experiment with the estimated parameter.

experiment = setEstimatedValues(experiment,C1_parameter);

3 Alphabetical List

3-54

Use experiment.Parameters.Value to verify that the capacitance parameter's value
is updated.

• “Estimate Model Parameters using Multiple Experiments (Code)”
• “Estimate Model Parameters Per Experiment (Code)”

See Also
sdo.Experiment.getValuesToEstimate

 sdo.getModelDependencies

3-55

sdo.getModelDependencies
Package: sdo

List of model file and path dependencies

Syntax

[dirs,files] = sdo.getModelDependencies(modelname)

Description

[dirs,files] = sdo.getModelDependencies(modelname) returns dependencies
of a Simulink model. The dependencies are required for parallel computing of parameter
estimation, response optimization, or sensitivity analysis tasks. The model must be open
for the dependency analysis.

sdo.getModelDependencies may not return a complete list of model dependencies;
some dependencies are undetectable. To learn more, see “Scope of Dependency
Analysis” in the Simulink documentation. If your model has dependencies that are
undetected or inaccessible by the parallel pool workers, then add them to the list of model
dependencies.

Input Arguments

modelname

Simulink model name, specified as a string inside single quotes (' ').

Output Arguments

dirs

Cell array of paths that contain model dependencies.

3 Alphabetical List

3-56

The cell array is empty when the model does not have any dependencies or
sdo.getModelDependencies does not detect any dependencies.

files

Cell array of files that are model dependencies.

The cell array is empty when the model does not have any dependencies or
sdo.getModelDependencies does not detect any dependencies.

Examples

List Model Dependencies Required for Parallel Computing

Copy Simulink model and boiler library to temporary folder.

pathToLib = boilerpressure_setup;

Add folder to search path and open model.

origPath = addpath(pathToLib);

boilerpressure_demo

Get model dependencies.

[dirs, files] = sdo.getModelDependencies('boilerpressure_demo');

dirs =

 'C:/Users/username/AppData/Local/Temp/tpadb428f6_4dbc_4a22_86de_5ce364ba7eb5'

files =

 'C:/Users/username/AppData/Local/Temp/tpadb428f6_4dbc_4a22_86de_5ce364ba7eb5/boilerpressure_demo.slx'

 'C:/Users/usertname/AppData/Local/Temp/tpadb428f6_4dbc_4a22_86de_5ce364ba7eb5/libsteam.slx'

The paths listed in dirs are the paths to all the file dependencies listed in files.

Enable parallel computing and add model dependencies.

opts = sdo.OptimizeOptions;

opts.UseParallel = 'always';

 sdo.getModelDependencies

3-57

opts.ParallelFileDependencies = files;

Add Additional Files to Model File Dependency List

Copy Simulink model and boiler library to temporary folder.

pathToLib = boilerpressure_setup;

Add folder to search path and open model.

origPath = addpath(pathToLib);

boilerpressure_demo

Get model dependencies.

[dirs, files] = sdo.getModelDependencies('boilerpressure_demo');

Append an additional file, filename.m located in 'C:\matlab\work\'

files = vertcat(files,'C:\matlab\work\filename.m');

Enable parallel computing and add model dependencies.

opts = sdo.OptimizeOptions;

opts.UseParallel = 'always';

opts.ParallelFileDependencies = files;

Make Local Paths Accessible to Remote Workers

Using file dependencies is recommended, however, in some cases it can be better to
choose path dependencies. For example, if parallel computing is set up on a local multi-
core computer, using path dependencies is preferred as using file dependencies creates
multiple copies of the dependency files on the local computer. This example shows how to
use path dependencies for setting up parallel computing.

Copy Simulink model and boiler library to temporary folder.

pathToLib = boilerpressure_setup;

Add folder to search path and open model.

origPath = addpath(pathToLib);

boilerpressure_demo

Get model dependencies.

3 Alphabetical List

3-58

[dirs, files] = sdo.getModelDependencies('boilerpressure_demo');

Add undetected path dependencies.

dirs = vertcat(dirs,'//hostname/C$/matlab/work');

Replace C:/ with valid network path accessible to remote workers.

dirs = regexprep(dirs,'C:/','////hostname//C$//');

Enable parallel computing and add model dependencies.

opts = sdo.OptimizeOptions;

opts.UseParallel = 'always';

opts.ParallelPathDependencies = dirs;

• Improving Optimization Performance Using Parallel Computing

Alternatives

• “How to Use Parallel Computing for Parameter Estimation”
• “How to Use Parallel Computing for Response Optimization”
• “How to Use Parallel Computing for Sensitivity Analysis”

More About

Tips

• files lists the model dependencies, and dirs lists the corresponding paths to these
dependencies.

The model dependencies are required during parallel computing and are made
accessible to the parallel pool workers by specifying one of the following:

• File dependencies: the model dependency files are copied to the parallel pool
workers.

Use files to set the ParallelFileDependencies property of
sdo.OptimizeOptions to use for parallel computing.

 sdo.getModelDependencies

3-59

• Path dependencies: the paths to the model dependencies are specified to the
parallel pool workers.

Use dirs to set the ParallelPathDependencies property of
sdo.OptimizeOptions to use for parallel computing.

• Modify files and dirs to include dependencies that sdo.getModelDependencies
cannot detect.

• Using file dependencies is recommended, however, in some cases it can be better
to choose path dependencies. For example, if parallel computing is set up on a local
multi-core computer, using path dependencies is preferred as using file dependencies
creates multiple copies of the dependency files on the local computer.

• “Speedup Response Optimization Using Parallel Computing”
• “Speedup Parameter Estimation Using Parallel Computing”
• “Analyze Model Dependencies”

See Also
sdo.OptimizeOptions | sdo.optimize | sdo.evaluate | sdo.EvaluateOptions

3 Alphabetical List

3-60

sdo.getParameterFromModel
Design variable for optimization

Syntax

p_des = sdo.getParameterFromModel(modelname,paramname)

p_des = sdo.getParameterFromModel(modelname)

Description

p_des = sdo.getParameterFromModel(modelname,paramname) creates an object
from a Simulink model parameter that you can tune to satisfy design requirements
during optimization. The model must be open.

p_des = sdo.getParameterFromModel(modelname) creates model parameter
objects for all the parameters in the model.

Input Arguments

modelname

Simulink model name, specified as a string inside single quotes (' ').

paramname

Model parameter name, specified as a string inside single quotes (' ') for one parameter
or a cell array of strings for multiple parameters.

Output Arguments

p_des

A param.Continuous object for one parameter or an array of objects for multiple
parameters.

 sdo.getParameterFromModel

3-61

If paramname is not specified, then p_des contains all the parameters of the model.

The Value property of the object is set to the current value of the model parameter.

Examples

Get Model Parameter as Optimization Design Variable

load_system('sldo_model1_stepblk');

p_des = sdo.getParameterFromModel('sldo_model1_stepblk','Kp');

Get Multiple Model Parameters as Optimization Design Variables

paramname = {'Kp','Ki','Kd'};

load_system('sldo_model1_stepblk');

p_des = sdo.getParameterFromModel('sldo_model1_stepblk',paramname);

Get All Model Parameters as Optimization Design Variables

load_system('sldo_model1_stepblk');

p_des = sdo.getParameterFromModel('sldo_model1_stepblk');

• “Design Optimization to Meet Step Response Requirements (Code)”
• “Estimate Model Parameter Values (Code)”

Alternatives

“Specify Design Variables”

See Also
sdo.optimize | sdo.setValueInModel

3 Alphabetical List

3-62

sdo.getStateFromModel

Package: sdo

Initial state for estimation from Simulink model

Syntax

s = sdo.getStateFromModel(modelname,blockpath)

s = sdo.getStateFromModel(modelname)

Description

s = sdo.getStateFromModel(modelname,blockpath) creates a state parameter
object for the state of a specified block in a Simulink model. Use the state object to either
specify the initial-state value in an experiment or estimate it.

s = sdo.getStateFromModel(modelname) creates state parameter objects for all the
states in the model.

Input Arguments

modelname

Simulink model name, specified as a string inside single quotes (' ').

The model must be open.

blockpath

Block path of the block containing the required state, specified as a string inside single
quotes (' ').

To specify multiple blocks, use a cell array of block path strings.

 sdo.getStateFromModel

3-63

Output Arguments

s

Model state, returned as a param.State object.

s.Value is the initial value of the state in the model.

When you use the syntax s = sdo.getStateFromModel(modelname,blockpath), s
contains the state of the corresponding block.

If blockpath specifies multiple blocks, then sdo.getStateFromModel returns a vector
of param.State objects.

Examples

Get States from Model

load_system('sdoAircraft');

blockpath = {'sdoAircraft/Actuator Model', ...

 'sdoAircraft/Controller/Proportional plus integral compensator'};

s = sdo.getStateFromModel('sdoAircraft',blockpath);

Get Model States

modelname = 'sdoAircraft';

load_system(modelname);

s = sdo.getStateFromModel(modelname);

s is a vector containing nine param.State objects, which represent all the states of the
sdoAircraft model.

• “Estimate Model Parameter Values (Code)”
• “Estimate Model Parameters and Initial States (Code)”

See Also
sdo.Experiment | param.State

3 Alphabetical List

3-64

sdo.getValueFromModel
Package: sdo

Get design variable value from model

Syntax

param_value = sdo.getValueFromModel(modelname,param_des)

Description

param_value = sdo.getValueFromModel(modelname,param_des) gets the value
of a design variable in a Simulink model. The model must be open.

Input Arguments

modelname

Simulink model name, specified as a string inside single quotes (' ').

param_des

Design variables, specified as:

• A string inside single quotes (' ') for one variable or a cell array of strings for
multiple variables

• A param.Continuous object for one variable or a vector of objects for multiple
variables, created using sdo.getParameterFromModel

Output Arguments

param_value

Design variable value in the model.

 sdo.getValueFromModel

3-65

A cell array for multiple variable values.

Examples

Get Current Design Variable Value From Model

load_system('sldo_model1_stepblk');

p_value = sdo.getValueFromModel('sldo_model1_stepblk','Kp');

Alternatively, type:

p_des = sdo.getParameterFromModel('sldo_model1_stepblk','Kp');

p_value = sdo.getValueFromModel('sldo_model1_stepblk',p_des);

See Also
sdo.optimize

3 Alphabetical List

3-66

sdo.scatterPlot
Scatter plot of samples

Syntax

sdo.scatterPlot(X,Y)

sdo.scatterPlot(X)

[H,AX,BigAX,P,PAx] = sdo.scatterPlot(___)

Description

sdo.scatterPlot(X,Y) creates a matrix of subaxes containing scatter plots of
the columns of X against the columns of Y. If X is p-by-n and Y is p-by-m, then
sdo.scatterPlot creates a matrix of n-by-m subaxes. X and Y must have the same
number of rows.

sdo.scatterPlot(X) is the same as sdo.scatterPlot(X,X), except that the
subaxes along the diagonal are replaced with histogram plots of the data in the
corresponding column of X. For example, the subaxes along the diagonal in the ith
column is replaced by hist(X(:,i)).

[H,AX,BigAX,P,PAx] = sdo.scatterPlot(___) returns the handles to the graphic
objects. Use these handles to customize the scatter plot. For example, you can specify
titles for the subaxes.

Examples

Scatter Plot of Parameter Samples and Cost Function Evaluations

Generally, you use the sdo.scatterPlot(X,Y) syntax with X specifying the samples
and Y specifying the cost function value for each sample. Use the sdo.evaluate
command to perform the cost function evaluation to generate Y. For this example, obtain
100 samples of the Ac and K parameters of the sdoHydraulicCyclinder model.
Calculate the cost function as a function of Ac and K. Create a scatter plot to see the
sample and cost function values.

 sdo.scatterPlot

3-67

Load the sdoHydraulicCyclinder model.

load_system('sdoHydraulicCylinder');

Generate 100 samples of the Ac and K parameters.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

ps = sdo.ParameterSpace(p);

X = sdo.sample(ps,100);

The first operation obtains the Ac and K parameters as a vector, p. The second operation
creates an sdo.ParameterSpace object, ps, that specifies the probability distributions
of the parameter samples. The third operation generates 100 samples of each parameter,
returned as a Table, X.

Calculate the cost function value table.

Ac_mean = mean(X{:,1});

K_mean = mean(X{:,2});

Y = table(X{:,1}/Ac_mean+X{:,2}/K_mean,'VariableNames',{'y'});

Create a scatter plot of X and Y.

sdo.scatterPlot(X,Y);

3 Alphabetical List

3-68

Scatter Plot of Parameter Samples

Sample the Ac and K parameters of the sdoHydraulicCyclinder model. Use a scatter
plot to analyze the samples.

Load the sdoHydraulicCyclinder model.

load_system('sdoHydraulicCylinder');

Generate 100 samples of the Ac and K parameters.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

ps = sdo.ParameterSpace(p);

X = sdo.sample(ps,100);

The first operation obtains the Ac and K parameters as a vector, p. The second operation
creates an sdo.ParameterSpace object, ps, that specifies the probability distributions
of the parameter samples. The third operation generates 100 samples of each parameter,
returned as a Table, X.

Create a scatter plot of X.

 sdo.scatterPlot

3-69

sdo.scatterPlot(X);

Set Scatter Plot Properties Using Handles

Generate samples of the Ac and K parameters of the sdoHydraulicCyclinder model.

load_system('sdoHydraulicCylinder');

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

ps = sdo.ParameterSpace(p);

X = sdo.sample(ps,100);

Create a scatter plot matrix and return the object handles and the axes handles.

figure

[H,AX,BigAX,P,PAx] = sdo.scatterPlot(X);

3 Alphabetical List

3-70

To set properties for the scatter plots, use the handles in H. To set properties for the
histograms, use the patch handles in P. To set axes properties, use the axes handles, Ax,
BigAX, and PAx.

Specify a title for the plot matrix and add legends specifying the sample distribution for
each parameter.

title('Samples of the sdoHydraulicCylinder model parameters Ac and K.')

legend(AX(1),'Ac samples - Uniform distribution')

legend(AX(4),'K samples - Uniform distribution')

 sdo.scatterPlot

3-71

• “Design Exploration using Parameter Sampling (Code)”
• “Identify Key Parameters for Estimation (Code)”

Input Arguments

X — Sampled data
table

3 Alphabetical List

3-72

Sampled data, specified as a table.

Y — Cost function evaluation data
table

Cost function evaluation data, specified as a table.

Output Arguments

H — Line object handles
matrix

Line object handles, returned as a matrix. This is a unique identifier, which you can use
to query and modify the properties of a specific line object. The line objects are used to
create the scatter plots.

AX — Subaxes handles
matrix

Subaxes handles, returned as a matrix. This is a unique identifier, which you can use to
query and modify the properties of a specific subaxes.

BigAX — Big axes handle
scalar

Big axes handle, returned as a scalar. This is a unique identifier, which you can use to
query and modify properties of the big axes. BigAX is left as the current axes (gca) so
that a subsequent title, xlabel, or ylabel command will center text with respect to
the big axes.

P — Patch object handles
vector | []

Patch object handles, returned as a vector or []. If histogram plots are created, then P
is returned as a vector of patch object handles for the histogram plots. These are unique
identifiers, which you can use to query and modify the properties of a specific patch
object. If no histogram plots are created, then P is returned as empty brackets.

PAx — Handle to invisible histogram axes
vector | []

 sdo.scatterPlot

3-73

Handle to invisible histogram axes, returned as a vector or []. If histogram plots are
created, then PAx is returned as a vector of histogram axes handles. These are unique
identifiers, which you can use to query and modify the properties of a specific axes,
such as the axes scale. If no histogram plots are created, then PAx is returned as empty
brackets.

More About
• “Sensitivity Analysis Methods”

See Also
sdo.evaluate | sdo.sample

3 Alphabetical List

3-74

isreal
Class: param.Continuous
Package: param

Determine if parameter value, minimum and maximum are real

Syntax

isreal(param_obj)

Description

isreal(param_obj) returns true (1) if the Value, Minimum and Maximum properties
of param_obj are all real.

Input Arguments

param_obj

A param.Continuous object.

Default:

Examples

Determine if Parameter Value and Minimum/Maximum Bounds are Real

p = param.Continuous('K',eye(2));

isreal(p)

ans =

 1

 isreal

3-75

Because the Value, Minimum, and Maximum properties of all parameters in p are real,
isreal returns 1.

See Also
param.Continuous

3 Alphabetical List

3-76

addParameter
Class: sdo.ParameterSpace
Package: sdo

Add parameter to sdo.ParameterSpace object

Syntax

ps = addParameter(ps0,p)

ps = addParameter(ps0,p,pdist)

Description

ps = addParameter(ps0,p) adds a model parameter, p, to an sdo.ParameterSpace
object, ps0, and returns the updated object, ps. The software updates the
ParameterNames property to include the parameter name.

The software also updates the ParameterDistributions property to specify the
uniform distribution for the parameter. The software sets the values of the two
parameters of the uniform distribution:

• Lower — Set to p.Minimum. If p.Minimum is equal to -Inf, then the software sets
Lower to 0.9*p.Value. Unless p.Value is equal to 0, in which case the software
sets Lower to -1.

• Upper — Set to p.Maximum. If p.Maximum is equal to Inf, then the software sets
Upper to 1.1*p.Value. Unless p.Value is equal to 0, in which case the software
sets Upper to 1.

ps = addParameter(ps0,p,pdist) specifies the probability distribution of p.

Input Arguments

ps0

Parameter space, specified as an sdo.ParameterSpace object.

 addParameter

3-77

p

Model parameters and states, specified as a vector of param.Continuous objects.

For example, sdo.getParameterFromModel('sdoHydraulicCylinder',
{'Ac','K'}).

pdist

Probability distribution of model parameters, specified as a vector of univariate
probability distribution objects.

• If pdist is the same size as p, the software specifies each entry of pdist as the
probability distribution of the corresponding parameter in p.

• If pdist contains only one distribution, the software specifies this object as the
probability distribution for all the parameters in p.

Use the makedist command to create a univariate probability distribution object. For
example, makedist('Normal','mu',10,'sigma',3).

To check if pdist is a univariate distribution object, run
isa('pdist,'prob.UnivariateDistribution').

Output Arguments

ps

Updated parameter space, returned as an sdo.ParameterSpace object.

Examples

Add Parameters to Parameter Space Object

Create an sdo.ParameterSpace object for the Ac parameter of the
sdoHydraulicCylinder model.

load_system('sdoHydraulicCylinder');

pAc = sdo.getParameterFromModel('sdoHydraulicCylinder','Ac');

ps = sdo.ParameterSpace(pAc);

3 Alphabetical List

3-78

Add the K parameter to ps.

pK = sdo.getParameterFromModel('sdoHydraulicCylinder','K');

ps = addParameter(ps,pK);

Add Parameter with Specified Distribution to Parameter Space Object

Create an sdo.ParameterSpace object for the Ac and C1 parameters of the
sdoHydraulicCylinder model.

load_system('sdoHydraulicCylinder');

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','C1'});

ps = sdo.ParameterSpace(p);

Add the K parameter to ps. Specify a normal distribution for K.

pK = sdo.getParameterFromModel('sdoHydraulicCylinder','K');

pKdist = makedist('Normal','mu',pK.Value,'sigma',2);

ps = addParameter(ps,pK,pKdist);

See Also
sdo.ParameterSpace.removeParameter | makedist |
sdo.getParameterFromModel | sdo.sample

More About
• “Sampling Parameters for Sensitivity Analysis”

 removeParameter

3-79

removeParameter
Class: sdo.ParameterSpace
Package: sdo

Remove parameter from sdo.ParameterSpace object

Syntax

ps = removeParameter(ps0,p)

Description

ps = removeParameter(ps0,p) removes the parameter, p, from the
sdo.ParameterSpace object, ps0, and returns the updated object, ps.

Input Arguments

ps0

Parameter space, specified as an sdo.ParameterSpace object.

p

Parameters to be removed, specified as:

• Vector of param.Continuos objects — Parameter objects. For example, p =
sdo.getParameterFromModel('sdoHydraulicCylinder','Ac').

• String — Parameter name. For example, 'Ac'.

Output Arguments

ps

Updated parameter space, returned as an sdo.ParameterSpace object.

3 Alphabetical List

3-80

Examples

Remove Parameter from sdo.ParameterSpace Object

Create an sdo.ParameterSpace object, ps, for the Ac and K parameters of the
sdoHydraulicCylinder model.

load_system('sdoHydraulicCylinder');

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

ps = sdo.ParameterSpace(p);

Remove K from ps.

ps = removeParameter(ps,p(2));

To verify that ps now contains only Ac, type ps.

Now, remove Ac from ps using the parameter name.

ps = removeParameter(ps,'Ac');

See Also
sdo.ParameterSpace | sdo.ParameterSpace.addParameter |
sdo.getParameterFromModel

 setDistribution

3-81

setDistribution
Class: sdo.ParameterSpace
Package: sdo

Set distribution of parameter in sdo.ParameterSpace object

Syntax

ps = setDistribution(ps0,p,pdist)

Description

ps = setDistribution(ps0,p,pdist) updates the ParameterDistributions
property of the sdo.ParameterSpace object, ps0, for the specified parameters, p, and
returns the updated object, ps.

Input Arguments

ps0

Parameter space, specified as an sdo.ParameterSpace object.

p

Parameters whose distributions are to be updated, specified as:

• Vector of param.Continuos objects — Parameter objects. For example, p =
sdo.getParameterFromModel('sdoHydraulicCylinder','Ac').

• String — Parameter name. For example, 'Ac'.

pdist

Probability distribution for model parameters, specified as a vector of univariate
probability distribution objects.

• If pdist is the same size as p, the software specifies each entry of pdist as the
probability distribution of the corresponding parameter in p.

3 Alphabetical List

3-82

• If pdist contains only one distribution, the software specifies this object as the
probability distribution for all the parameters in p.

Use the makedist command to create a univariate probability distribution object. For
example, makedist('Normal','mu',10,'sigma',3).

To check if pdist is a univariate distribution object, run
isa('pdist,'prob.UnivariateDistribution').

Output Arguments

ps

Updated parameter space, returned as an sdo.ParameterSpace object.

Examples

Set Distribution of Parameters in Parameter Space

Create an sdo.ParameterSpace object for the Ac and K parameters of the
sdoHydraulicCylinder model.

load_system('sdoHydraulicCylinder');

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

ps = sdo.ParameterSpace(p);

The call to sdo.ParameterSpace does not specify probability distributions for the
parameters in p. So, by default, the software specifies the uniform distribution for all
parameters in p.

ps.ParameterDistributions

ans =

 1x2 UniformDistribution array

Specify the normal distribution for Ac and K.

pAcdist = makedist('Normal','mu',p(1).Value,'sigma',1);

pKdist = makedist('Normal','mu',p(2).Value,'sigma',3);

 setDistribution

3-83

ps = setDistribution(ps,p,[pAcdist;pKdist]);

See Also
makedist | sdo.getParameterFromModel | sdo.sample

3 Alphabetical List

3-84

sdo.setCheckBlockEnabled
Package: sdo

Enable or disable all check blocks in model

Syntax

chk_blk_state = sdo.setCheckBlockEnabled(modelname,state)

Description

chk_blk_state = sdo.setCheckBlockEnabled(modelname,state) sets the
Enabled parameter of all the check blocks in an open Simulink model to the specified
value. The function returns the original value of the Enabled parameter of all the model
check blocks.

Use this function to disable the check blocks (model verification blocks) in a model before
running an optimization for the model. After optimization completes, you can restore the
enabled state of the model check blocks by calling this function again. Use the output
from the previous call as the second input for the function.

Input Arguments

modelname

Simulink model name, specified as a string inside single quotes (' ').

The model must be open.

state

Switch enabling or disabling model check blocks, specified as either 'on' or 'off'.

To restore the enabled state of the model check blocks, specify state as the output from
the previous call to sdo.setCheckBlockEnabled.

 sdo.setCheckBlockEnabled

3-85

Output Arguments

chk_blk_state

Original values of the Enabled block parameter of the model check blocks, returned as a
cell array of strings.

Examples

Disable Model Check Blocks

Disable the model check blocks in a model.

modelname = 'pidtune_demo';

open_system(modelname);

state = 'off';

chkBlkState = sdo.setCheckBlockEnabled(modelname,state);

To restore the enabled state of the model check blocks, use:

sdo.setCheckBlockEnabled(modelname,chkBlkState)

Alternatives

You can open each model verification block in a model and select or clear the Enable
assertion check box.

3 Alphabetical List

3-86

sdo.setValueInModel
Package: sdo

Set design variable value in model

Syntax

sdo.setValueInModel(modelname,param_des)

sdo.setValueInModel(modelname,param_des,value)

Description

sdo.setValueInModel(modelname,param_des) sets the value of a parameter in an
open Simulink model to the Value property of the design variable param_des .

You generally use this command to update the Simulink model with optimized parameter
values.

sdo.setValueInModel(modelname,param_des,value) sets the parameter to the
value you specify.

Input Arguments

modelname

Simulink model name, specified as a string inside single quotes (' ').

param_des

Design variable, specified as

• A param.Continuous object for one variable or a vector of objects for multiple
variables, created using sdo.getParameterFromModel.

• A string inside single quotes (' ') for one variable or a cell array of strings for
multiple variables.

 sdo.setValueInModel

3-87

You must also specify the value argument.

value

Value to set for the design variable.

Use a cell array with the same number of elements as the number of variables in
param_des for setting values of multiple design variables.

Default:

Examples

Change the design variable value in a model.

sldo_model1_stepblk;

p_des = sdo.getParameterFromModel('sldo_model1_stepblk','Kp');

p_des.Value = 1.1*p_des.Value;

sdo.setValueInModel('sldo_model1_stepblk',p_des);

The value of Kp is set to the Value property of p_des.

Alternatives

“Update Model with Design Variables Set”

See Also
sdo.optimize

3 Alphabetical List

3-88

sdo.optimize
Package: sdo

Design optimization problem solution

Syntax

[param_opt,opt_info] = sdo.optimize(opt_fcn,param)

[param_opt,opt_info] = sdo.optimize(opt_fcn,param,options)

[param_opt,opt_info] = sdo.optimize(prob)

Description

[param_opt,opt_info] = sdo.optimize(opt_fcn,param) uses fmincon (the
default optimization method) to solve a design optimization problem of the form:

min subject to
p

leq

eq

eq

F p

C p

C p

A p B

A p Beq

lb p ub

()

()

()

£

=

¥ £

¥ =

£ £

0

0

ÏÏ

Ì

Ô
Ô
Ô

Ó

Ô
Ô
Ô

where

• p — Design variable
• Cleq, Ceq — Nonlinear inequality and equality constraints
• A, B — Linear inequality constraints
• Aeq, Beq — Linear equality constraints
• lb, ub — Upper and lower bounds on p

[param_opt,opt_info] = sdo.optimize(opt_fcn,param,options) specifies the
optimization options. For parameter estimation, you typically use the Nonlinear Least
Squares method:

 sdo.optimize

3-89

opts = sdo.OptimizeOptions('Method','lsqnonlin');

[param_opt,opt_info] = sdo.optimize(prob) uses a structure that contains the
function to be minimized, design variables and optimization options.

Input Arguments

opt_fcn

Function to be minimized. The optimization solver calls this function during
optimization.

The function requires:

• One input argument, which is a vector of param.Continuous objects to be tuned.

To pass additional input arguments, use an anonymous function. For example,
new_fcn = @(p) fcn(p,arg1,arg2, ...).

• One output argument, which is a structure with one or more of the following fields:

• F — Value of the cost function evaluated at p. The solver minimizes F.

F is a 1x1 double.
• Cleq — Value of the nonlinear inequality constraint violations evaluated at p. The

solver satisfies Cleq(p) <= 0.

Cleq is a double mx1 vector, where m is the number of nonlinear inequality
constraints.

• Ceq — Value of the nonlinear equality constraint violations evaluated at p. The
solver satisfies Ceq(p) == 0.

The value is a double rx1 vector, where r is the number of nonlinear equality
constraints.

• leq — Value of the linear inequality constraint violations evaluated at p. The
solver satisfies leq(p) <= 0.

leq is a double nx1 vector, where n is the number of linear inequality constraints.
• eq — Value of the linear equality constraint violations evaluated at p. The solver

satisfies eq(p) == 0.

3 Alphabetical List

3-90

eq is a double sx1 vector or [], where s is the number of linear equality
constraints.

To specify a pure feasibility problem, omit F or set F = []. To specify a minimization
problem, omit Cleq, Ceq, leq and eq or set their values to [].

The software computes gradients of the cost and constraint violations using numeric
perturbation. If you want to specify how the gradients are computed, include a second
output argument and set the GradFcn property of sdo.OptimizeOptions to 'on'.
This argument must be a structure with one or more of the following fields:

• F — Double nx1 vector that contains dF(p)/dp, where n is the number of scalar
parameters.

• Cleq — Double nxm matrix that contains dCleq(p)/dp, where m is the number of
nonlinear inequality constraints.

• Ceq — Double nxr matrix that contains dCeq(p)/dp, where r is the number of
nonlinear equality constraints.

For an example, type edit sdoExampleCostFunction.

Default:

param

A param.Continuous object or a vector of objects.

Default:

options

Optimization options.

options is an options set, created using sdo.OptimizeOptions. Use this options set to
specify:

• Optimization method
• Maximum number of iterations
• Tolerances

Default:

 sdo.optimize

3-91

prob

Structure with the following fields:

• OptFcn — Name of the function to be minimized. See opt_fcn for the input and output
argument requirements of this function.

• Parameters — A param.Continuous object or a vector of objects
• Options — Optimization options, specified using sdo.OptimizeOptions

Default:

Output Arguments

param_opt

A param.Continuous object or vector of objects, containing the optimized parameter
values in the Value property.

opt_info

Optimization information. Structure with one or more of the following fields:

• F — Optimized cost (objective) value.
• Cleq — Optimized nonlinear inequality constraint violations.

The field appears if you specify a nonlinear inequality constraint in opt_fcn.

The value is a mx1 vector, where the order of the elements correspond to the order
specified in opt_fcn. Positive values indicate that the constraint has not been satisfied.
Check exitflag to confirm that the optimization succeeded.

• Ceq — Optimized nonlinear equality constraint violations.

The field appears if you specify a nonlinear equality constraint in opt_fcn.

The value is a double rx1 vector, where the order of the elements correspond to the
order specified in opt_fcn. Any nonzero values indicate that the constraint has not
been satisfied. Check exitflag to confirm that the optimization succeeded.

• leq — Optimized linear equality constraint violations.

3 Alphabetical List

3-92

The field appears if you specify a linear equality constraint in opt_fcn.

The value is a double nx1 vector, where the order of the elements correspond to the
order specified in opt_fcn. Nonzero values indicate that the constraint has not been
satisfied. Check exitflag to confirm that the optimization succeeded.

• eq — Optimized linear equality constraint violations.

The field appears if you specify linear equality constraints in opt_fcn.

The value is a double sx1 vector, where the order of the elements correspond to the
order specified in opt_fcn. Nonzero values indicate that the constraint has not been
satisfied. Check exitflag to confirm that the optimization succeeded.

• Gradients — Cost and constraint gradients at the optimized parameter values. See
“How the Optimization Algorithm Formulates Minimization Problems” on how the
solver computes gradients.

This field appears if the solver specified in the Method property of
sdo.OptimizeOptions computes gradients.

The value is a structure whose fields are dependent on opt_fcn.
• exitflag — Integer identifying the reason the algorithm terminated. See fmincon,

patternsearch and fminsearch for a list of the values and the corresponding
termination reasons.

• iterations — Number of optimization iterations
• SolverOutput — A structure with solver-specific output information. The fields of

this structure depends on the optimization solver specified in the Method property of
sdo.OptimizeOptions. See fmincon, patternsearch and fminsearch for a list
of solver outputs and their description.

• Stats — A structure that contains statistics collected during optimization, such as
start and end times, number of function evaluations and restarts.

Examples

Optimize Model Response

Create design variables.

p = param.Continuous('x',1);

 sdo.optimize

3-93

Specify optimization options.

opts = sdo.OptimizeOptions;

opts.GradFcn = 'on';

Optimize the parameter.

[pOpt,opt_info] = sdo.optimize(@(p) sdoExampleCostFunction(p),p,opts);

• “Design Optimization to Meet Step Response Requirements (Code)”
• “Estimate Model Parameter Values (Code)”
• “Design Optimization to Meet a Custom Objective (Code)”

Alternatives

“Design Optimization to Meet Step Response Requirements (GUI)”

More About

Tips

• By default, the software displays the optimization information for each iteration in
the MATLAB command window. To learn more about the information displayed, see:

• “Iterative Display” when the optimization method is specified as 'fmincon'
(default), 'fminsearch', or 'lsqnonlin'

• “Display to Command Window Options” when the optimization method is specified
as 'patternsearch'

You can configure the level of this display using the MethodOptions.Display
property of an optimization option set.

• “Writing a Cost Function”
• “Optimization Options”
• “Optimization Options”

See Also
function_handle (@) | param.Continuous | sdo.OptimizeOptions

3 Alphabetical List

3-94

sdo.sample
Generate parameter samples

Syntax

x = sdo.sample(ps)

x = sdo.sample(ps,N)

x = sdo.sample(___ ,opt)

Description

x = sdo.sample(ps) generates samples using the specified parameter space
definition, ps. The output sample table, x, has 2Np+1 rows and Np columns. Each
column corresponds to a parameter and each row corresponds to a sample of the
parameters. Np is the number of parameters in ps. The samples are generated as per the
ParameterDistributions, RankCorrelation, and Options property of ps.

x = sdo.sample(ps,N) specifies the number of samples to be generated. x is a table
with N rows and Np columns.

x = sdo.sample(___ ,opt) specifies sampling options such as the sampling method.
This syntax can include any of the input argument combinations in the previous
syntaxes.

Examples

Generate Parameter Samples

Generate samples for the Ac and K parameters of the sdoHydraulicCylinder model.

Open the model.

open_system('sdoHydraulicCylinder');

Obtain the parameters from the model.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

 sdo.sample

3-95

Create an sdo.ParameterSpace object to specify the sample distributions.

ps = sdo.ParameterSpace(p);

Generate samples for the parameters.

x = sdo.sample(ps);

Specify Number of Samples

Generate 50 samples for the Ac and K parameters of the sdoHydraulicCylinder
model.

Open the model.

open_system('sdoHydraulicCylinder');

Obtain the parameters from the model.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

Create an sdo.ParameterSpace object to specify the sample distributions.

ps = sdo.ParameterSpace(p);

Generate 50 samples for the parameters.

x = sdo.sample(ps,50);

Specify Sampling Options

Open the model.

open_system('sdoHydraulicCylinder');

Obtain the parameters from the model.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

Create an sdo.ParameterSpace object to specify the sample distributions.

ps = sdo.ParameterSpace(p);

Specify the sampling method used by the software.

opt = sdo.SampleOptions;

opt.Method = 'lhs';

3 Alphabetical List

3-96

The 'lhs' (Latin hypercube) sampling method requires a Statistics and Machine
Learning Toolbox license.

Generate 50 samples for the parameters using Latin hypercube sampling.

x = sdo.sample(ps,50,opt);

• “Design Exploration using Parameter Sampling (Code)”
• “Identify Key Parameters for Estimation (Code)”

Input Arguments

ps — Parameter space distribution
sdo.ParameterSpace object

Parameter space distribution definition, specified as an sdo.ParameterSpace object.

N — Number of samples
positive integer

Number of samples to be generated for the parameters, specified as a positive integer.

Ideally, you want to use the smallest number of samples that yield useful results,
because each sample requires a model evaluation.

As the number of parameters increases, the number of samples needed to explore the
design space generally increases. For correlation or regression analysis, consider using
10Np samples, where Np is the number of parameters.
Example: 10

opt — Sampling options
sdo.SampleOptions object

Sampling options, specified as an sdo.SampleOptions object.

Output Arguments

x — Parameter samples
table

 sdo.sample

3-97

Parameter samples, returned as a table.

x has Ns rows and Np columns. Each column corresponds to a parameter and each row
corresponds to a sample of the parameters. Np is the number of parameters in ps. If you
specify N, Ns is equal to N. Otherwise, Ns is equal to 2Np+1.

More About
• “Sampling Parameters for Sensitivity Analysis”

See Also
sdo.SampleOptions | sdo.evaluate

3 Alphabetical List

3-98

find
Class: sdo.SimulationTest
Package: sdo

Find logged data set

Syntax
data = find(sim_obj,data_name)

Description
data = find(sim_obj,data_name) searches for an element with a specific name in
the LoggedData property of sim_obj. Use who to find possible names.

Input Arguments
sim_obj

sdo.SimulationTest object

data_name

Data set name to search for, specified as a string inside single quotes (' ').

Output Arguments
data

Logged simulation data for the data set name specified in data_name.

Examples
Find Logged Data Set

Log model signals.

 find

3-99

Pressures = Simulink.SimulationData.SignalLoggingInfo;

Pressures.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';

Pressures.OutputPortIndex = 1;

simulator = sdo.SimulationTest('sdoHydraulicCylinder');

simulator.LoggingInfo.Signals = Pressures;

Run a simulation.

sim = sim(simulator);

Search for logged data.

sim_log = find(simulator,'sdoHydraulicCylinder');

• “Design Optimization to Meet Step Response Requirements (Code)”
• “Design Optimization to Meet a Custom Objective (Code)”

See Also
sim | sdo.optimize | who

3 Alphabetical List

3-100

sim
Class: sdo.SimulationTest
Package: sdo

Simulate Simulink model using simulation scenario

Syntax

sim_out = sim(sim_obj)

Description

sim_out = sim(sim_obj) simulates a Simulink model using a simulation scenario.

Tips

• Before simulating the model, specify the parameter values and signals to log in the
Parameters and LoggingInfo properties of the sim_obj. The software restores the
parameter values and logging settings to their original values after simulation.

Input Arguments

sim_obj

sdo.SimulationTest object

Output Arguments

sim_out

sdo.SimulationTest object which contains the logged data in the LoggedData
property.

 sim

3-101

Examples

Simulate a model and log model signal during simulation.

Log model signals.

Pressures = Simulink.SimulationData.SignalLoggingInfo;

Pressures.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';

Pressures.OutputPortIndex = 1;

simulator = sdo.SimulationTest('sdoHydraulicCylinder');

simulator.LoggingInfo.Signals = [Pressures];

Specify parameter values.

Ac = sdo.getParameterFromModel('sdoHydraulicCylinder','Ac');

Ac.Value = 0.5;

simulator.Parameters = Ac;

Simulate the model.

sim_obj = sim(simulator);

The specified signal Pressure is logged during simulation.

See Also
find | sdo.optimize | who

3 Alphabetical List

3-102

who
Class: sdo.SimulationTest
Package: sdo

List logged data names

Syntax

names = who(sim_obj)

Description

names = who(sim_obj) returns a list of logged data names.

Input Arguments

sim_obj

sdo.SimulationTest object

Output Arguments

names

Cell array of logged data set names.

Examples

List logged data set names.

Log model signals.

Pressures = Simulink.SimulationData.SignalLoggingInfo;

 who

3-103

Pressures.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';

Pressures.OutputPortIndex = 1;

Store logged signal data.

simulator = sdo.SimulationTest('sdoHydraulicCylinder');

simulator.LoggingInfo.Signals = Pressures;

simulator = sim(simulator);

Find logged data sets.

names = who(simulator);

See Also
find | sdo.optimize | sim

3 Alphabetical List

3-104

sdotool
Open Response Optimization tool

Syntax

sdotool(modelname)

sdotool(sdosession)

Description

sdotool(modelname) opens the Response Optimization tool and creates a new session.
The model must be open or on the MATLAB path.

sdotool(sdosession) opens a previously saved Response Optimization tool session.

Input Arguments

modelname

Simulink model name, specified as a string inside single quotes (' ').

sdosession

Response Optimization tool session variable, saved in a MAT-file, model or MATLAB
workspace.

Examples

Create a New Response Optimization Tool Session

sdotool('pidtune_demo');

Open Response Optimization Tool Using a Saved Session

load sdoAircraft_sdosession;

 sdotool

3-105

sdotool(SDOSessionData);

SDOSessionData is the Response Optimization tool session variable saved in the
sdoAircraft_sdosession.mat file.

• “Design Optimization to Meet a Custom Objective (GUI)”

More About

Tips

• sdotool also updates Signal Constraint blocks in the model to the equivalent blocks
from the Signal Constraints block library.

3 Alphabetical List

3-106

sdoupdate

Update model containing Signal Constraint block

Syntax

sdoupdate(modelname)

sdoupdate(modelname,noprompt)

session = sdoupdate(modelname)

Description

sdoupdate(modelname) replaces Signal Constraint blocks in a Simulink model with
equivalent blocks from the Signal Constraints library. If the model has an associated
response optimization project, this command replaces it with a session that you can use
with the Response Optimization tool, after prompting you to update. The model must be
open.

sdoupdate(modelname,noprompt) updates the response optimization project without
prompting you.

session = sdoupdate(modelname) returns the Response Optimization tool session.

Input Arguments

modelname

Simulink model name, specified as a string inside single quotes (' ').

noprompt

Whether to prompt you about updating the response optimization project (false) or not
(true).

Default: false

 sdoupdate

3-107

Output Arguments

session

Response Optimization tool session name.

See Also
sdotool

3 Alphabetical List

3-108

spetool
Create Estimation Task in Parameter Estimation Tool

Syntax

spetool('modelname')

Description

spetool('modelname') opens the Simulink model with the name modelname and
creates an estimation task in the Parameter Estimation tool.

Examples

Create an estimation task by typing the following command at the MATLAB prompt:

spetool('engine_idle_speed')

This command opens the following:

• Simulink model

• Parameter Estimation tool containing a session with an estimation experiment

 spetool

3-109

More About
• “Import Data”

